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Abstract. Researching and proposing the solutions in the field ofmutation testing
in order to answer the question of how to improve the effectiveness of mutant
testing is a problem that researchers, who study in the field of mutation testing,
are interested. Limitations of mutation testing are really big problems that prevent
its application in practice although this is a promising technique in assessing the
quality of test data sets. The number of generated mutants is too large and easy-
to-kill mutants are two of those problems. In this paper, we have studied and
presented our solution, as well as analyzed the empirical results for the purpose
of introducing a way to improve the effectiveness of mutant testing. Instead of
constructing higher order mutants by using and combining first-order mutants as
previous studies, we propose a method to use higher-order mutants for creating
mutants. In other words, wehavecombined two“lower”ordermutants toconstruct
“higher” order mutants, i.e., use two second order mutants to construct a fourth
order mutant, guided by our proposed objective and fitness functions. According
to the experimental results, the number of generated is reduced and number of
valuable mutants is fairly large, we have concluded that our approach seems to be
a good way to overcome the main limitations of mutation testing.

Keywords: Mutation testing · Limitations of mutation testing · Overcome ·
Reducing the cost · Harder to kill · Realistic faults

1 Introduction

In the field of Software Testing, Mutation Testing (MT), including First Order Mutation
Testing (FOMT) and Higher Order Mutation Testing (HOMT), is an effectiveness app-
roach (also high automation technique) which has been introduced to assess the quality
of test suites.
Mutation Testing technique evaluates the quality of a given test suite by evaluating

the test case ability to detect differences between the original program and its mutants.
A mutant is another version of the original program, in which one or more different
operators have been changed.

© Springer Nature Switzerland AG 2020
N. T. Nguyen et al. (Eds.): ICCCI 2020, LNAI 12496, pp. 205–216, 2020.
https://doi.org/10.1007/978-3-030-63007-2_16



206 Q.-V. Nguyen

Hamlet [1] and DeMillo et al. [2] are the first authors who present the idea of mutant
testing and its related concepts. Whilst, the concepts and descriptions about higher order
mutation testing as well as the distinction between First Order Mutants (FOMs) and
Higher Order Mutants (HOMs) are firstly introduced by co-authors: Jia et al. [3] and
Harman et al. [4].
Hitherto, there are many different interesting researches, such as [3–37], which have

been proposed in the field of mutation testing. Some of these researches were developed
to apply and improve the effectiveness ofmutation testing and someotherswereproposed
to overcome the problems of mutation testing. According to these researches result,
mutation testing has a wide range of applications in software testing. It can be used with
different programming languages for testing software at the unit level, the integration
level or the specification level [5].
However, there are some really big barriers of mutation testing which are the main

reasons to explain why mutation testing is not yet widely adopted in practice [5, 6].

• The first of them refers to the problem of high execution cost due to a large number
of generated mutants. The execution cost of mutation testing includes not only the
execution cost of software under test as well as all generated mutants against the
given set of test cases but also the execution cost for their corresponding output
results evaluations to determine that the mutant is “killed” or “alive” [1, 2].
• The second one is realism problem of generated mutants, in other words, the mutants
do not denote realistic faults.
• And another is generatedmutants are simple and so easy to kill. An easy-to-kill mutant
is a mutant which is killed by all of given set of test cases.

In Mutation Testing, the quality of a set of test cases is evaluated by MS (Mutation
Score) [1, 2] or MSI (Mutation Score Indicator) [11, 26–29] which is calculated based
on number of generated mutants, number of killed mutants, number of equivalent
mutants and number of alive mutants.
A mutant is called a “killed mutant” if its output results differ from the original

program when they are executed with the same test case (in a given set of test cases).
Conversely, if the mutant has the same output as the original program with all given test
cases, it is called “alive mutant”. Equivalent mutants are the mutants which always
produce the same output as the original program, so they cannot be killed.
As we mentioned before, there are so many researches, e.g., [3–37], which have

been introduced to overcome the main problems of mutation testing including traditional
mutation testing (also known as first mutation testing or traditional mutation testing) and
higher order mutation testing. With those studies, besides the advantages which make
mutation testing get more effectiveness while doing, there are also some disadvantages
that need to be considered, i.e., the number of generated mutants is still very large and
this leads to a high execution cost of mutation testing.
In the above-mentioned studies [3–37], the authors have focused on twomain meth-

ods for constructing higher order mutants: (1) Insert n faults (n = 1..70) [18, 19, 23] to
create a n-order-mutant; (2) Combine n first-order-mutants to produce a n-order-mutant
[20–25].
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Different from the 2 above-methods, we will propose the another: Combine two
“lower” order mutants to construct “higher” order mutants (guided by our proposed
objective and fitness functions) as follows:

• Use two first order mutants to construct a second order mutant.
• Use two second order mutants to construct a fourth order mutant.
• And so on.

In addition, based on our previous research results [20–25], we will only use not-
easy-to-kill mutants (details are presented in Sect. 2) to construct the higher-order-
mutants.
The purpose of this investigation is to focus on the way to overcome the aforemen-

tioned limitations as well as to improve the effectiveness of mutation testing by com-
bining the lower order mutants to construct higher order mutants. In this study of the
paper, we have focused on reducing the number of mutants generated while improving
the quality of mutations.
In the next section, we will present in details the backgrounds as well as the hypothe-

ses of research problem and from that introduce the idea for this study. Section 3 presents
and analyzes empirical results to demonstrate the effectiveness of our solution. And the
last section is used to give a conclusion and some ideas for future work.

2 Background and the Idea for Study

In our previous works [20–25], we have proposed and proved (through empirical results)
the effectiveness of applying multi-objective optimization algorithms into higher order
mutation testing based on our mutant classification as well as our objective and fitness
functions.
According to our researches, there are some positive results that we will reuse as

“hypotheses” for the study in this paper, specifically as follows:

• Our mutant classification consists of eleven kinds (H1–H11) of HOMs and can cover
all of the available cases of generated HOMs [20–24]. The idea of our HOMs clas-
sification approach is based on the combination of a set of test cases which can kill
HOM, and sets of test cases which can kill its constituent FOMs.

• H1 is group of alive (potentially equivalent) mutant. Alive mutants can be “really
equivalent mutants” or “difficult-to-kill mutant”. This mean that, the mutants cannot
be killed by the given set of test cases which are included in the project under test, but
they perhaps could be killed by other new, better test cases in terms of fault detecting.
Reduction of H1 mutants leads to reducing of mutation testing execution cost of the
given set of test cases on those live mutants [20–24].

• H4–H9 are groups of “Reasonable mutants”. They are harder to kill and more
realistic (reflecting real, complex faults) than their constituent FOMs [20–24].

• H7 is group of “High quality and reasonable mutants” [20–24]. These mutations,
in our study, are the best ones which can be used to replace the set of their constituent
FOMs while ensuring the effectiveness of the test. In this case, the set of test cases
can kill both HOMs and their constituent FOMs.
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• eNSGAII algorithm is the best multi-objective optimization algorithm in terms of
constructing the “H7 - High Quality and Reasonable HOMs” [24]. Approximately
12% of “reasonable HOMs” in our studies, which were found by eNSGAII algorithm,
are classified as “high quality and reasonable HOMs”.
• Five (5) a relevant upper bound onmutation order in higher ordermutation testing [23,
24]. This conclusion of us based on the relationships between the order of mutation
testing and the properties of mutants.
• Thenot-easy-to-killmutants should beused togenerate higher ordermutants because
it seems to be a promising method to improve the quality of test cases [22, 24].
Easy-to-kill mutants are the mutants that are killed by all given test cases of project

under test. The not-easy-to-kill mutants are the remaining ones of the set of all generated
mutants after deleting all easy-to-kill mutants.

From these hypotheses, in this study, we have proposed the solution for increasing
the effectiveness (in terms of reducing the cost, generating valuable mutants and do not
waste computational resources for creating mutants, which are easy to kill by most test
cases) of mutation testing by combining two lower order mutants to construct higher
order mutants (5 is upper bound order [23, 24]) as follows:

• Firstly, generate all possible FOMs, calculate number of generated FOMs, number of
live (potentially equivalent) FOMs and MSI.
• Delete easy-to-kill-FOMs from the set of generated FOMs.
• From set of remaining-FOMs (The not-easy-to-kill FOMs), generate Second Order
Mutants (SOMs) by combining two FOMs guided by our objective and fitness
functions;
• Calculate number of H1, H4–H9, H7 and MSI of second order mutation testing.
• Delete easy-to-kill-SOMs from the set of generated SOMs.
• From set of remaining-SOMs (The not-easy-to-kill SOMs), generate Fourth Order
Mutants (FOOMs) by combining two SOMs guided by our objective and fitness
functions;
• Calculate number of H1, H4–H9, H7 and MSI of fourth order mutation testing.
• Evaluate and compare the obtained results.

In our solution, we have focused on eliminating the easy-to-kill mutants before
constructing the higher-order mutants due to many studies have been demonstrated that
the majority (about 90%) of real faults of software are complex faults [18, 19].
We have used (and extended) Judy [29] as a support tool to generate and evaluate

FOMs and HOMs (SOMs and FOOMs) with the same full set of mutation operators
of Judy. This is a tool that can be used to generate mutations, perform mutant testing,
evaluate results and produce reports as well as support both first order and high order
mutation testing.
As described in Sect. 2, eNSGAII algorithm is the best multi-objective optimization

algorithm in terms of constructing valuable mutants. That is why we continue to use this
algorithm in our research of this paper.
Selected projects under test, five open source projects (Barbecue, BeanBin, JWBF,

Common Chain 1.2 and Common Validator 1.4.1) downloaded from SourceForge
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(https://sourceforge.net/), for experiment along with number of classes (NOC), number
of lines of code (LOC) and number of build-in test cases (NOT) are shown in Table 1.

Table 1. Projects under test

PROJECT NOC LOC NOT

Barbecue 57 23.996 190

BeanBin 72 5.925 68

JWBF 51 13.572 305

CommonChain 1.2 103 13.410 17

CommonValidator 1.4.1 144 25.422 66

These projects have a fairly large number of lines of code, as well as built-in test
cases that are considered to be quality. Besides, these projects also include a test suite
with a high number of test cases.

3 Empirical Results and Analysis

We have produced First Order Mutants, Second Order Mutants, Fourth Order Mutants
as well as analyzed and calculated the corresponding parameters for each order of the
generated mutants.
Experimental results of First Order Mutation Testing (FOMT), Second Order Muta-

tionTesting (SOMT) and FourthOrderMutation Testing (FOOMT) are shown in Table 2,
3 and 4 respectively.

Table 2. FOMT results

PROJECT Number of FOMs % of live (potentially equivalent)
FOMs to all FOMs

MSI(%)

Barbecue 3.084 84,21% 15,79%

BeanBin 1.330 84,89% 15,11%

JWBF 1.482 87,04% 12,96%

CommonChain 1.2 1.476 57,35% 42,65%

CommonValidator 1.4.1 2.981 52,90% 47,10%

In this study, we haveused the following parameters to confirmour proposed solution
is good or not to improve the effectiveness of mutation testing (in terms of reducing the
cost, generating valuable mutants and do not waste computational resources for creating
mutants which are easy to kill by most of the test cases):
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Table 3. SOMT results

PROJECT Number of
SOMs

% of H1 to
all SOMs

% of H4–H9
to all SOMs

% of H7 to
all SOMs

MSI(%)

Barbecue 678 37,61% 54,24% 6,25% 62,39%

BeanBin 297 37,89% 53,18% 6,12% 62,11%

JWBF 329 42,22% 40,09% 6,08% 57,78%

CommonChain 1.2 320 39,85% 51,12% 6,21% 60,15%

CommonValidator
1.4.1

656 36,10% 63,47% 6,25% 63,90%

Table 4. FOOMT results

PROJECT Number of
FOOMs

% of H1 to
all FOOMs

% of H4–H9
to all FOOMs

% of H7 to
all FOOMs

MSI

Barbecue 99 32,15% 66,19% 6,13% 67,85%

BeanBin 68 33,01% 58,24% 6,01% 66,99%

JWBF 71 34,83% 54,41% 6,05% 65,17%

CommonChain 1.2 78 38,95% 45,80% 6,14% 61,05%

CommonValidator
1.4.1

92 25,12% 60,94% 6,12% 74,88%

• Number of generated mutants;
• Number of “Live” mutants;
• Number of “Reasonable” mutants;
• Number of “High Quality and Reasonable”;

In Table 2, the main parameters are followings:

• Number of generated first order mutants;
• Proportion of live (potentially equivalent) mutants (H1) to all generated mutants;
• MSI;

Whilst, in Table 3 and 4, the main parameters are followings:

• Number of generated second/fourth order mutants,
• The proportionsof Live (potentially equivalent)mutants (H1) to all generatedmutants;
• The proportions of group of reasonable mutants (H4–H9) to all generated mutants;
• “High Quality and Reasonable” mutants (H7) to all generated mutants.
• MSI;
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From the obtained results shown in Tables 2, 3 and 4 above, we can see that the
number of constructed mutations tends to significantly reduce in order from lower to
higher (See Fig. 1 below).

Fig. 1. Number or generated mutants of 1st, 2nd and 4th order mutation testing

Number of generated of FOMs (1st order) is about 4,5 times more than number of
generated of SOMs (2nd order), and number of generated of SOMs (2nd order) is about
5,5 times more than number of generated of FOOMs (4th order).
In other words, the number of higher ordermutants is reduced at least 70% compared

to the adjacent lower order mutants. This is because we only use the set of not-easy-to-
kill lower mutants instead of using all lower generated mutants to construct the higher
mutants. In addition, we focus on constructing the valuable (H7 - High Quality and
Reasonable)mutants instead of generating all possiblemutants by applying our proposed
objectives and fitness functions [20–24].
Reducing the number of generated mutants leads to reduce the execution cost of

mutation testing. Therefore, it can be said that our solution in this paper is a promising
method for overcoming the big problem (a very large number of generated mutants) of
mutation testing in general and higher order mutation testing in particular.
Figure 2 shows that the number of H1 mutants decreases in orders (from 73.28% of

FOMT to 38.73% of HOMT and 25.12% of FOOMT). This demonstrates that the higher
order mutants are more complex and more realistic than their constituent lower order
mutants. As mentioned above, H1 is the group of alive (potentially equivalent) mutants.
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Fig. 2. The mean MSI and H1 proportion to all generated mutants

The second conclusion drawn from the experimental results is: Mutant combination
does not decrease the quality of set of test cases due to increasing of MSI in order (from
26.72% of FOMT to 61.27% of HOMT and 74.88% of FOOMT).
Another noteworthy result, shown in Fig. 3, that is proportion of group H4–H9

mutants to total generated HOMs is high, about 52,42% (in SOMT) to 57,12% (in
FOOMT).
As we mentioned in Sect. 2, H4–H9 are groups of reasonable mutants which are

harder to kill and more realistic (reflecting real, complex faults) than their constituent.
The term “Reasonable mutant” (harder to kill mutant), in our study, means that “the
set of test cases which kills mutant is smaller than the set of test cases which kills its
constituent”.
Reducing number of needed test cases leads to reducing testing costs without loss of

test effectiveness. Because, inmutation testing (including higher ordermutation testing),
the mutation testing cost covers not only the original program but also all of its mutants
against all given set of test cases.
The number of test cases is smaller but still ensuring the quality is what we want in

mutation testing. It can be said that overcoming the problem of mutation testing costs
will lead to the widespread application of mutation testing techniques to reality.
According to experimental results, in both of SOMT and FOOMT, the mean ratio

of H7 mutants to all generated mutants is about 6,2% and to all reasonable mutants
(H4–H9) is about 11%.
This is a fairly high number because H7 mutant is a best one (High Quality and

Reasonable Mutant) in our proposed approach [20–25] for constructing the quality
mutants. In fact, they can be used to replace the set of their constituent mutants without
lost of testing effectiveness. In other words, it helps to reduce the mutation testing cost
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Fig. 3. Proportion (%) of H4–H9 mutants to all generated mutants in order

effectively. In our solution, although the number of higher-order mutants is always lower
than the number of lower-order mutants, the rate of H7 is still high.
This, once again, demonstrates that this is a promising method that may need to be

further researched and applied to not only reduce the number of produced mutants but
also to construct a fairly large number of High Quality and Reasonable Mutant.

4 Conclusions

In this paper, through the approach of combining two lower order mutants to construct
higher order mutants, we have investigated and presented a solution which can be used
to overcome the main limitations of mutation testing. That are problems of large number
of mutants and this also leads to have a very high execution cost; generated mutants are
simple, easy to kill and do not denote realistic faults in practice.
Our empirical results indicate that the solution presented in this study is fairly good

way to address the main limitations of mutation testing in terms of reducing the cost,
generating valuable mutants and do not waste computational resources for creating
mutants, which are easy to kill by most test cases.
Overcoming the mentioned main limitations of mutation testing will contribute to

promote applying mutation testing into the field of software testing more widely and
effectively. This applying will be very helpful for those who want to improve the quality
of test cases (especially test data sets) for software testing because, it can be said up,
mutation testing is considered as an automatic, powerful and effective technique to
evaluate the quality of test suites.
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Our research results, though only a preliminary study, are positive for us to continue
to research and from that to promote the actual implementation of mutation testing.
Of course, to achieve that desire, we need further investigation with more realistic and
larger software to demonstrate that our proposing solution is really effective. Working
with software testing companies or software companies is also a good way to validate
and improve the effectiveness of this approach in the future.

References

1. Hamlet, R.G.: Testing programs with the aid of a compiler. IEEE Trans. Softw. Eng. (SE)
3(4), 279–290 (1977)

2. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for the practicing
programmer. IEEE Comput. 11(4), 34–41 (1978)

3. Jia, Y., Harman, M.: Higher order mutation testing. Inform. Softw. Technol. 51, 1379–1393
(2009)

4. Harman, M., Jia, Y., Langdon, W.B.: A manifesto for higher order mutation testing. In: Third
International Conference on Software Testing,Verification, and ValidationWorkshops (2010)

5. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE
Trans. Softw. Eng. 37(5), 649–678 (2011)

6. Nguyen, Q.V., Madeyski, L.: Problems of mutation testing and higher order mutation test-
ing. In: van Do, T., Thi, H.A.L., Nguyen, N.T. (eds.) Advanced Computational Methods for
Knowledge Engineering. AISC, vol. 282, pp. 157–172. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-06569-4_12

7. Offutt, A.J.: Investigations of the software testing coupling effect. ACM Trans. Softw. Eng.
Methodol. 1, 5–20 (1992)

8. Polo, M., Piattini, M., Garcia-Rodriguez, I.: Decreasing the cost of mutation testing with
second-order mutants. Softw. Test. Verification Reliab. 19(2), 111–131 (2008)

9. Kintis, M., Papadakis, M., Malevris, N.: Evaluating mutation testing alternatives: a collateral
experiment. In: Proceedings 17th Asia Pacifc Software Engineering. Conference (APSEC)
(2010)

10. Papadakis, M., Malevris, N.: An empirical evaluation of the first and second order mutation
testing strategies. In: Proceedings of the 2010 Third International Conference on Software
Testing, Verification, and Validation Workshops, ser. ICSTW’10, Computer Society, pp. 90–
99. IEEE (2010)

11. Madeyski, L., Orzeszyna,W., Torkar, R., Józala,M.: Overcoming the equivalent mutant prob-
lem: a systematic literature review and a comparative experiment of second order mutation.
IEEE Trans. Softw. Eng. 40(1), 23–42 (2014)

12. Omar, E., Ghosh, S.: An exploratory study of higher order mutation testing in aspect-oriented
programming. In: IEEE 23rd International Symposium on Software Reliability Engineering
(2012)

13. Jia, Y., Harman, M.: Constructing subtle faults using higher order mutation testing. In:
Proceedings Eighth Int’lWorkingConferenceSource CodeAnalysis andManipulation (2008)

14. Omar,E., Ghosh,S.,Whitley,D.:Constructing subtle higher ordermutants for java and aspectJ
programs. In: International Symposium on Software Reliability Engineering, pp. 340–349
(2013)

15. Omar, E., Ghosh, S., Whitley, D.: Comparing search techniques for fnding subtle higher
order mutants. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary
Computation, pp. 1271–1278 (2014)



Increasing Mutation Testing Effectiveness by Combining Lower Order Mutants 215

16. Belli, F., Güler, N., Hollmann, A., Suna, G., Yıldız, E.: Model-based higher-order mutation
analysis. In: Kim, T., Kim, H.K., Khan, M.K., Kiumi, A., Fang, W., Ślęzak, D. (eds.) ASEA
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