Please use this identifier to cite or link to this item: https://elib.vku.udn.vn/handle/123456789/1008
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTran, The Son-
dc.contributor.authorLee, Chando-
dc.contributor.authorLe, Minh Hoa-
dc.contributor.authorNauman, Aslam-
dc.contributor.authorMoshin, Raza-
dc.contributor.authorNguyen, Quoc Long-
dc.date.accessioned2021-03-08T02:57:17Z-
dc.date.available2021-03-08T02:57:17Z-
dc.date.issued2020-
dc.identifier.citationhttps://link.springer.com/chapter/10.1007/978-3-030-63119-2_11vi_VN
dc.identifier.isbn978-3-030-63119-2 (eBook)-
dc.identifier.isbn978-3-030-63118-5-
dc.identifier.issn1865-0937 (electronic)-
dc.identifier.issn1865-0929-
dc.identifier.urihttp://elib.vku.udn.vn/handle/123456789/1008-
dc.descriptionScientific Paper; Pages: 125-138vi_VN
dc.description.abstractThis paper investigates the image-based malware classification using machine learning techniques. It is a recent approach for malware classification in which malware binaries are converted into images (i.e. malware images) prior to feeding machine learning models, i.e. k-nearest neighbour (k-NN), Naïve Bayes (NB), Support Vector Machine (SVM) or Convolution Neural Networks (CNN). This approach relies on image texture to classify a malware instead of signatures or behaviours of malware collected via malware analysis, thus it does not encounter a problem if the signatures of a new malware variant has not been collected or the behaviours of a new malware variant has not been updated. This paper evaluates classification performance of various machine learning classifiers (i.e. k-NN, NB, SVM, CNN) fed by malware images in various dimensions (i.e., 128 × 128, 64 × 64, 32× 32, 16 × 16). The experiment results achieved on three different datasets including Malimg, Malheur and BIG2015 show that kNN outperforms others on three datasets with high accuracy (i.e. 97.9%, 94.41% and 95.63% respectively). On the contrary, NB showed its weakness on imagebased malware classification. Experiment results also indicate that the accuracy of the k-NN reaches the highest value at the input image size of 32 × 32 and tends to reduce if too many feature information provided by large input images, i.e. 64 × 64, 128 × 128.vi_VN
dc.language.isoenvi_VN
dc.publisherSpringer Publishingvi_VN
dc.subjectDeep Learningvi_VN
dc.subjectCNNvi_VN
dc.subjectk- NNvi_VN
dc.subjectNaïve Bayesvi_VN
dc.subjectSVMvi_VN
dc.subjectImage-Based malware classificationvi_VN
dc.titleAn Evaluation of Image-Based Malware Classification Using Machine Learningvi_VN
dc.typeWorking Papervi_VN
Appears in Collections:12th International Conference on Computational Collective Intelligence - ICCCI 2020

Files in This Item:

 Sign in to read



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.