Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/2153
Nhan đề: Hybrid genetic algorithms for the determination of DNA motifs to satisfy postulate 2-Optimality
Tác giả: Dang, Dai Tho
Nguyen, Ngoc Thanh
Hwang, Dosam
Từ khoá: Evolutionary computation
Hybrid genetic algorithm
Postulate 2-Optimality
DNA motif
DNA sequence
Năm xuất bản: thá-2022
Nhà xuất bản: Springer Nature
Trích dẫn: https://doi.org/10.1007/s10489-022-03491-7
Tóm tắt: Currently, determining DNA motifs or consensus plays an indispensable role in bioinformatics. Many postulates have been proposed for finding a consensus. Postulate 2-Optimality is essential for this task. A consensus satisfying postulate 2-Optimality is the best representative of a profile, and its distances to the profile members are uniform. However, this postulate has not been widely investigated in identifying a DNA motif or consensus for a DNA motif profile. The HDC algorithm is the best at this task in the literature. This study focuses on determining DNA motifs that satisfy postulate 2-Optimality. We propose a new hybrid genetic (HG1) algorithm based on the elitism strategy and local search. Subsequently, a novel elitism strategy and longest distance strategy are introduced to maintain the balance of exploration and exploitation. A new hybrid genetic (HG2) algorithm is developed based on the proposed exploration and exploitation balance approach. The simulation results show that these algorithms provide a high-quality DNA motif. The HG2 algorithm provides a DNA motif with the best quality.
Mô tả: Emerging Topics in Artificial Intelligence Selected from IEA/AIE2021;
Định danh: https://link.springer.com/article/10.1007/s10489-022-03491-7
http://elib.vku.udn.vn/handle/123456789/2153
ISSN: 1573-7497 (e)
Bộ sưu tập: NĂM 2022

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.