Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/238
Nhan đề: Một cải tiến thuật toán K-Means song song sử dụng phương pháp lấy mẫu
Tác giả: Trần, Hoàng Việt
Nguyễn, Thị Tuyết
Trần, Thiên Thành
Từ khoá: K-means cải tiến
MapReduce
PK-means
SK-meansMR
Năm xuất bản: 2017
Tóm tắt: Phân cụm dữ liệu là một kỹ thuật ứng dụng trong nhiều lĩnh vực khác nhau. K-means là thuật toán kinh điển trong phân cụm dữ liệu. Hiện tại, trong thời điểm bùng nổ dữ liệu, K-means cũng như các thuật toán khác không đáp ứng yêu cầu về tốc độ. Việc cải tiến thuật toán để xử lý dữ liệu lớn là nhu cầu cấp thiết. Trong nghiên cứu này, chúng tôi trình bày ý tưởng cải tiến thuật toán phân cụm dữ liệu PK-means, phân tích ưu và nhược điểm của thuật toán này, sau đó trình bày thuật toán cải tiến của chúng tôi SK-meansMR và thực nghiệm đánh giá chất lượng, tốc độ của thuật toán trên dữ liệu lớn
Định danh: http://thuvien.cit.udn.vn//handle/123456789/238
Bộ sưu tập: CITA 2017

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.