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Abstract. In this paper, we propose a new approach to facial expression 
recognition based on the constrained non-negative matrix factorization 
algorithm. Our proposed method incorporated two tasks in an automatic 
expression analysis system: facial feature extraction and classification into 
expressions. To obtain local and geometric structure information in the data as 
much as possible, we unite max-margin classification into the constrained NMF 
optimization, resulting in a multiplicative updating algorithm is also proposed for 
solving optimization problem. Experimental results on JAFFE dataset 
demonstrate that the effectiveness of the proposed method with improved 
performances over the conventional dimension reduction methods. 
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1 Introduction 

Facial expression recognition (FER) has been increased the attention from 
psychologists anthropologists, and computer scientists [1, 2, 3]. The computer 
researchers attempt to create complex human-computer interfaces that are able to 
automatically recognizing and classifying human expressions or emotions. Fasel et al. 
[1] define facial expressions as temporally deformed facial features such as eyelids,
eyebrows, nose, lips and skin texture created by compressions of facial muscles. They
observed common changes of muscular activities to be brief, “lasting for a few seconds,
but rarely more than five seconds or less than 250 ms”. They additionally bring up the
essential fact that felt emotions are only single source of facial expressions besides
others like verbal and non-verbal correspondence or physiological activities.

In spite of facial expressions are not to equate with feelings (and the terms are 
commonly wrongly exchanged), in the PC vision group, the expression " facial 
expression recognition" frequently refers to the characterization of facial components 
in one of the six alleged essential feelings: happiness, sadness, fear, disgust, surprise 
and anger, as presented by Ekman in 1971 [2]. This endeavor of an elucidation depends 
on the suspicion that the appearances of feelings are widespread crosswise over people 
and also human ethnics and societies. 
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Fig. 1. Six universal emotions 

Two tasks are necessary for an automatic expression analysis system [4]: facial 
feature extraction and classification into expressions. In facial feature extraction, there 
are mainly two kinds of approaches: geometric feature-based and appearance-based 
methods. After localizing the face, as much information as possible about the displayed 
facial expression has to be extracted. In facial expression recognition, most automatic 
expression analysis systems attempt to recognize a small set of prototypic expressions 
(i.e. joy, surprise, anger, sadness, fear, and disgust). 

Table 1. Universal emotion identification 

Universal emotion identification 

Emotion Definition Motion of facial part 

Anger Anger shows the most dangerous 

emotion, it may be very harmful, 

humans are trying to avoid this 

emotion.   

Eyebrows pulled down, Open eye, teeth shut 

and lips tightened, upper and lower lids pulled 

up. 

Fear Fear is the emotion of danger. It 

may be physical or psychological 

harms. 

Outer eyebrow down, inner eyebrow up, 

mouth open, jaw dropped. 

Happines

s 

Happiness is most desired 

expression by human.  

Open Eyes, mouth edge up, open mouth, lip 

corner pulled up, cheeks raised, and wrinkles 

around eyes. 

Sadness Sadness is opposite emotion of 

Happiness.  

Outer eyebrow down, inner corner of 

eyebrows raised, mouth edge down, closed eye, 

lip corner pulled down. 

Surprise This emotion comes when 

unexpected things happens.  

Eyebrows up, open eye, mouth open, jaw 

dropped. 

Disgust Disgust is a feeling of dislike such 

as taste, smell, sound or tough.  

Lip corner depressor, nose wrinkle,  lower 

lip depressor, Eyebrows pulled down 
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2 Facial expression recognition 

2.1 Feature Extraction Using Nonnegative Matrix Factorization 

In this section, we describe the most important step in a facial expression recognition 
system which is feature extraction step that it can be analyzed in terms of facial action 
occurrence after the face has been located in the image or video frames.  Over the past 
several decades, massive efforts have been made and remarkable achievements are 
obtained in FER. One key step in FER is to form or extract expression features from 
the original face images. Several wide used feature extraction methods such as Principal 
component analysis (PCA) [5], Eigen-face [6], Singular value decomposition (SVD) 
[7] Nonnegative matrix factorization (NMF) [8].

In NMF algorithm, it was described as follow: Given a nonnegative � × � matrix
� = (��, ��, … , ����) ∈ ��×� is exactly the facial data which is going to analyzed, we
have to find nonnegative matrix factor � (� × �) and matrix factor � = (� × �) such 
that � ≈ �� where � is a smaller number compared to � and �. 

A column vector in original matrix � can be considered as the weighted summation 
of all vectors in left matrix �, while the weight coefficients are the elements of the 
corresponding column vector in the right matrix �. The non-negativity constrains of  � 
and � compatible with the intuitive notion of combining parts to form a whole, which 
is how NMF learns a part-based representation. 

min
�,�

�(�, �) =
�

�
‖� − ��‖�

� , �. �. � ≥ 0, � ≥ 0 (1) 

where ‖. ‖� is Frobenius norm of a matrix, and the product ���is the non-negative
matrix factorization approximation of � of rank at most �. The non-negativity 
constraints on � and �enables only additive (non-subtractive) combination of parts to 
construct the whole data.  

In facial expression recognition application, the grey value of each facial image 
is nonnegative and stored in the computer as a form of matrix � = [��, ��, … , ��],
where �� is an � dimension column vector, which is made up the nonnegative grey

facial expression image. The matrix � can be disassembled into the product of a 
nonnegative matrix � which represents the NMF basic images and a nonnegative 
weight coefficient matrix �, NMF decomposition makes the reconstruction of 
expression images in a non-subtractive way and much similar to the process of forming 
unity from parts. 

Fig. 2. Basic structure of facial expression analysis system [4] 
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2.2 Classification by SVM Classifier 

The last part of the FER system is based on machine learning theory; exactly it is the 
classification task. The input to the classifier is a set of features which were retrieved 
from face region in the previous stage. The set of features is formed to describe the 
facial expression. Classification requires supervised training, so the training set should 
consist of labeled data.  

Support vector machine (SVM) is a kind of pattern classification method based on 
the statistical learning theory, and designed in the principle of minimizing on 
construction risk. As for the binary linearly separable classification problem, SVM not 
only distinguish both classes with no errors, but also find the best separation line to 
make the largest margin between two classes. In higher dimension space, SVM 
becomes finding a best classification hyperplane for the high dimensional data. To 
resolve the multiclass problem, we use many sub-classifiers such as binary classifiers, 
and two regular strategies are one-against-one and one-against-all, as a result we find a 
multiclass classifier from a series of binary classifiers. For the C-class problem, one-
against-one have to create �(� − 1)/2 binary classifiers while one-against-all only 
have to create � binary classifiers.  

2.3 Adaptive Feature Extraction and Classification Method 

There is few existed works that use constrains the aim at increasing the discriminative 
power of the extracted features. Several variants of NMF with discriminant constraints 
imposed were proposed in [9, 10]. Kumar et al [11] introduced an adaptive feature 
extraction and classification method which proposed soft max-margin constraints to the 
objective function of NMF to obtain a bases matrix that maximized the classification 
margin using the features that are extracted using those bases. Inspired by this, they aim 
at finding a set of basis vectors that maximizes the margin of a SVM classifier. 

Let {�� , ��}���
� denote a set of data vectors and their corresponding labels, where �� ∈

��, �� ∈ {−1,1}. Our aim is to determine a bases matrix U that can be used to extract
features that are optimal under a max-margin classification criterion. This is 
accomplished by imposing constraints on the feature vectors derived from U. In this 
work, the features that are extracted from a data example x are given by ���. That is,
they are the projections of the data example x on the bases vectors stored in U. Then, 
the optimization problem is given by 

���
�,�,�,�,��

�‖� − ��‖�
� +

�

�
��� + � ∑ ��

�
��� (2) 

�. t. y�(w���x� + b) ≥ 1 − ε�, ε� ≥ 0,1 ≤ i ≤ L, � ≥ 0

where � = (��, . . . , ��. . . ��) is the lack variable vector, � is a scalar that controls the
relative importance for the NMF cost and C a scalar that controls the relative 
importance of the penalty imposed for the training examples that are either too close to 
the separating hyper-plane or misclassified. 
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3 Methodology 

In this section, we introduce the unified objective function of proposed model which 
archives the upper objectives by combining the benefit of max-margin classifiers and 
NMF constraints together, through adding the pixel dispersion penalty and manifold 
regularization into the objective function. Following, we drive a multiplicative update 
rules using optimized gradient method and describe how the systems use this algorithm 
to perform the classification task we expect it to do. 

3.1 Max-margin Nonnegative Matrix Factorization via Spatial Constraints 
and Graph Regularization  

The unified objective function is constructed by jointing the data reconstruction 
objective function: 

���
�,�,�,�,�

‖� − ��‖�
� + ��(

�

�
‖�‖�

� + � ∑ ��)
�
��� + ����(����) + ����(����) (3)

�. �. � ≥ 0, � ≥ 0, �� ≥ 0, ��(���� + �) ≥ 1 − ��, � = 1. . �

All variables are divided into three terms: the coefficient matrix (V), the basis matrix 
(U) and variables about max-margin projection (w, b, ε). Where ‖. ‖� is Frobenius norm
of a matrix, and the product �� is the non-negative matrix factorization approximation
of � of rank at most �; � = (��, . . . , ��. . . ��) is the lack variable vector, �� and C are
scalars; the regularization parameter �� ≥ 0 controls the smoothness of the new
representation; �� ≥ 0, � ≪ � and c0 is a simple positive constant bound parameter; L
is called graph Laplacian, E is called the dispersion kernel matrix. 

Multiplicative Update Rules. 

Update the Projection Vector and Slack Variables. 
When the coefficient matrix and the basis matrix are fixed, MMNMF_MR 

optimization problem changes into the standard binary soft-margin SVM classification. 

���
�,�,�

��(
�

�
‖�‖�

� + � ∑ ��), �. �. �� ≥ 0, ��(���� + �) ≥ 1 − ��, � = 1. . ��
��� (4) 

 The hyper-plane parameters �, � and slack variable vector � are obtained using an 
off-the-shelf SVM classifier. 

Update the Coefficient Matrix. 
When other variables are fixed, the optimization of the coefficient matrix is 

transformed to quadratic programming: 

���
�

‖� − ��‖�
� + ����(����) (5)
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�. �. � ≥ 0, ��(���� + �) ≥ 1 − ��, � = 1. . �
The Lagrangian of above objective function is 

�(�, �, �) = ��(� − ��)(� − ��)� + ����(����) − ���

− � ��[��(���� + �) − 1 + ��]

�

���

where �, � are Lagrangian multipliers, specifically � is Lagrangian multipliers vector. 
Under the Karush-Kuhn-Tucker (KKT) conditions, we get 

�
2���� − 2��� + 2����� − � − ��� = 0

1�� = 0
�(��� − �) − 1 + � = 0

Transform the equation into a matrix for 

�
2��� + 2���� −1� −��

1� 0 0
��� 0 0

� × �
�
�
�

� = �
����

0
�� + 1 − �

� 

where 1 is a unit vector whose size is the same as v, 0 is the zero vector. We can derive 
v by solving this equation. 

Update the Basis Matrix. 
When other variables are fixed, the model is transformed to a non-negative matrix 

factorization: 

�� = min
�

‖� − ��‖�
� + ����(����), �. �. � ≥ 0  (6) 

Because of the non-negative constraints, we use gradient descent methods to solve 
this problem.  The gradient of equation (6) is 

∇= 2���� − 2���� + 2����

Classification. 
During testing, the input test vector xtest  is projected onto the basis matrix U to obtain 

the feature vector, ����� = ������� . The feature vector is used by the max-margin
classifier which predicts the class ����� = ����(������� + �) where w, b, U are
computed during training. 
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Fig. 3. 

Algorithm for Max-margin Nonnegative Matrix Factorization via Spatial Constrainst and Graph 
Regularization 

4 Experiments 

In this subsection, proposed MNMF_SGR method would be experimented and 
compared against several popular subspace learning algorithms, specifically the 
unsupervised methods (NMF [8], Spatial NMF [9] and Graph NMF [10]). We also 
compared with the supervised algorithm Semi-NMF [12] and Max-margin NMF [11]. 

Fig. 4. The flow chart of MNMF_SGR based image reconstruction for facial expression 
recognition 

4.1 Datasets 

Japanese Female Facial Expression (JAFFE) database [13]: The database contains 213 
images of 7 facial expressions (6 basic facial expressions + 1 neutral) posed by 10 
Japanese female models. Each image has been rated on 6 emotion adjectives by 60 
Japanese subjects. The database was planned and assembled by Michael Lyons, Miyuki 

Algorithm for MNMF_SGR 

Input: Matrix X, rank k, maxIter; positive constants  ��, ��, ��

Output: U, V, w, b 

Begin 

Initial the basis matrix U0 and the coefficient V0, let t=0 

Let s=1, U=Us, V=Vs 

Repeat 

Fix U and Vs to find ws+1, bs+1 via equation (4) 

Fix V, ws and bs+1 to find Us+1 via equation (5) 

s=s+1 

Until reaches the maximal iteration number; 

Let t=t+1, Vt=Vs, wt=ws,bt=bs 

Learning the new basis matrix Ut via minimizing equation (3.1) 

End 
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Kamachi, and Jiro Gyoba. We thank Reiko Kubota for her help as a research assistant. 
The photos were taken at the Psychology Department in Kyushu University. 

4.2 Preprocessing 

Due to the background is larger than face image; firstly we apply the Viola-Jones 
algorithm to find the faces. For eyes, nose and mouth detection we applied cascaded 
object detector with region set on already detected frontal faces. Actually it uses Viola-
Jones Algorithm as an underlying system. This preprocessing step is critical in 
achieving good classifier performance. Each original image from both databases is 
cropped and down-sampled in a such way that the final image size is 16 × 16 pixels. 

Fig. 5. Face and facial parts detection 

All algorithms were initialized with 20 random U and V matrices, each of them was 
trained for 20 iterations and the one with the minimum objective function value was 
further trained for 1000 iterations. 

4.3 Parameter Settings 

For training and testing splits, we repeated the following procedure for ten times. 
Each time we randomly selected two-thirds of number of image per individual and 
labeled them. All the other images were unlabeled and used as the testing set. 

In MNMF_SGR, �� was tested for the following values {0.01, 1, 10} and �� was
tested for {1, 100} and �� was tested for {10-5, 10-4,..., 102}. Firstly, the dimensionality
reduction process with NMF, SpaNMF, GNMF and Semi-NMF algorithms, the trained 
coefficient matrix is ready to be used for classifying a testing face image. Then we use 
SVM algorithm for the classifiers in the face recognition. 

With MNMF and MNMF_SGR, after training process we compute the feature 
vector from the input test vector which is projected onto the basis matrix. After that, 
this feature vector is used in predicting class of face recognition. All algorithms were 
initialized with 20 random U and V matrices, each of them was trained for 20 iterations 
and the one with the minimum objective function value was further trained for 1000 
iterations. 

4.4 Classification Results. 

The results of facial expression recognition for JAFFE dataset shown in Figure 6. Semi-
supervised algorithms outperform all un-supervised ones. MNMF_SGR has highest 
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accuracy, and then followed by MNMF_FA, MNMF, SpaNMF, GNMF, SemiNMF and 
standard NMF. MNMF_SGR outperforms NMF by 21.87%. The highest classification 
accuracy of 86.94% is achieved with k=30. 

Fig. 6. JAFFE dataset facial expression recognition average accuracies (%) of different 
algorithms of five iterations 

The confusion matrix of facial expression recognition shown in Table II using 
proposed method with 30 number of feature vectors (k=30). Some of the sad and 
happiness facial expression are confused with each other. The difference of happiness 
and sad failed because these expressions had a similar motion of mouth. 

Table 2. Confusion matrix of 7-class facial expression recognition using proposed method 
MNMF_SGR on JAFFE 

An Di Fe Ha Sa Su Ne 

0.6268 0.1813 0.7285 0 0.0812 0.0322 0.0333 

0.1234 0.4510 0.1009 0.0426 0.1268 0 0.0224 

0 0.1191 0.4825 0.0918 0.0810 0 0.0421 

0 0.1289 0.0199 0.7490 0.0211 0.0635 0.1289 

0.1713 0.1270 0.1197 0.0423 0.5343 0.0524 0.1756 

0 0 0 0.0203 0.0417 0.7417 0.0722 

0 0.0000 0.0198 0.0486 0.1222 0.0711 0.5221 

5 Conclusion 

In this paper, constrained NMF approach had been introduced in the context of facial 
expression recognition. The proposed MNMF_SGR performs well in facial expression 
recognition task. This demonstrates the effectiveness of our model. To summarize, 
more constraints enable to build more effective models especially on high dimensional, 
sparse and noisy datasets. For future work more sophisticated and efficient way to tune 
kernel functions will be explored. We will also apply the proposed method to problems 
in other fields, such as bioinformatics and computer vision. Studying the convergence 
rate for MNMF_SGR and increasing the efficiency, they should be all in consideration. 

0%

20%

40%

60%

80%

100%

5 10 15 20 25 30

NMF

SpaNMF

GNMF

SemiNMF

MNMF

MNMF_SGR

47



References 

1. B. Fasel, J. Luettin, “Automatic facial expression analysis: a survey”, Pattern Recognition,
36 (1) (2003), pp. 259-275.

2. Ekman. P, Friesen W.V, "Constants across cultures in the face and emotion”, Journal of
Personality and Social Psychology, 17: 124–129, 1971.

3. L. Mai, “Joint Support Vector Machine with Constrained Nonnegative Matrix Factorization
and Its Applications”, Master Thesis, National Central University, July 2017.

4. Ying Zilu, Zhang Guoyi, "Facial Expression Recognition Based on NMF and SVM", IEEE:
International Forum on Information Technology and Applications, pp. 612-615, 2009.

5. H. Moon and P. J. Phillips, “Computational and performance aspects of PCAbased face-
recognition algorithms.,” Perception, vol. 30, no. 3. pp. 303–21, Jan- 2001.

6. H. Wechsler, “Enhanced Fisher linear discriminant models for face recognition,”
Proceedings. Fourteenth Int. Conf. Pattern Recognit. (Cat. No.98EX170), vol. 2, pp. 1368–
1372.

7. L.-F. Chen, H.-Y. M. Liao, M.-T. Ko, J.-C. Lin, and G.-J. Yu, “A new LDA-based face
recognition system which can solve the small sample size problem,” Pattern Recognit., vol.
33, no. 10, pp. 1713–1726, Oct. 2000.

8. D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization”, Advances
in Neural Information Processing System, 2000.

9. W. S. Zheng, J. Lai, S. Liao, R. He, “Extracting non-negative basis images using pixel
dispersion penalty”, Pattern Recognition, pp. 2912-2926, 2012.

10. D. Cai, X. He, J. Han and T. Huang, “Graph regularized nonnegative matrix factorization
for data representation”, IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 33(8), pp. 1548–1560, 2011.

11. B. G. Kumar, I. Kotsia and I. Patras, “Max-margin nonnegative matrix factorization”, Image
Vision Computing, pp. 279–291, 2012.

12. C. Ding, T. Li, and M. Jordan, “Convex and semi-nonnegative matrix factorizations for
clustering and low-dimension representation”, Technical Report LBNL-60428, Lawrence
Berkeley National Laboratory, University of California, Berkeley, 2006.

13. Evidence and a computational explanation of cultural differences in facial expression
recognition. Matthew N Dailey, Carrie Joyce, Michael J Lyons, Miyuki Kamachi, Hanae
Ishi, Jiro Gyoba, & Garrison W Cottrell Emotion, Vol 10(6), Dec 2010, 874-893.

48


