Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/1843
Nhan đề: | Deep Learning in Aspect-Based Sentiment Analysis |
Tác giả: | Tran, Uyen Trang Hoang, Thi Thanh Ha |
Từ khoá: | Aspect-Based Sentiment Analysis Deep Learning Aspect Extraction Opinion Classification |
Năm xuất bản: | 2021 |
Nhà xuất bản: | Da Nang Publishing House |
Tóm tắt: | Sentiment analysis helps to capture the community’s opinion about a trend, product, service or public figure. The purpose of sentiment analysis is to build a system of extracting, classifying and defining opinions in reviews. Aspect-based sentiment analysis pays attention to the sentiment extract corresponding to the aspect of the entity in the sentiment text. In this paper, we propose a novel supervised learning approach using deep learning techniques with GRU, and CNN for aspect-based opinion mining system. Our approach focuses on extracting aspects and classifying respective opinions in review. We use GloVe with 100-dimension feature vector for word embeddings and experiment our proposed model on Restaurant and Laptop domains of the SemEval 2014 benchmark dataset. Experimental results showed that our model has extracted and classified simutaneously aspect and opinion in sentiment text and achieved better accuracy than the previous state-of-the-art models. |
Mô tả: | The 10th Conference on Information Technology and its Applications; Topic: Data Science and AI; pp. 12-21 |
Định danh: | http://elib.vku.udn.vn/handle/123456789/1843 |
ISBN: | 978-604-84-5998-7 |
Bộ sưu tập: | CITA 2021 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.