Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/205
Nhan đề: | An Extended Max-margin Non-negative Matrix Factorization for Face Recognition |
Tác giả: | Mai, Lam |
Từ khoá: | face recognition graph regularization nonnegative matrix factorization support vector machine spatial constrains |
Năm xuất bản: | 2017 |
Tóm tắt: | Non-negative matrix factorization (NMF) is a dimension-reduction technique based on a low-rank approximation of the feature space. Unfortunately, most existing NMF based methods are not ready for encoding higher-order data information and ignore the local geometric structure contained in the data set. Additionally, the previous classification approaches which the classification and matrix factorization steps are separated independently. The first one performs data transformation and the second one classifies the transformed data using classification methods as support vector machine (SVM). In this paper, therefore, we joint SVM and constrained NMF into one by uniting maximum margin classification constraints into the constrained NMF optimization. Experimental results on the benchmark image datasets demonstrate the effectiveness of the proposed method |
Định danh: | http://thuvien.cit.udn.vn//handle/123456789/205 |
Bộ sưu tập: | CITA 2017 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.