Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/2199
Nhan đề: Improving the neural network model in combination with a big semantic-enriched corpus for building an English - Vietnamese semantic-oriented machine translation system
Tác giả: Nguyen, Van Binh
Huynh, Cong Phap
Dang, Dai Tho
Từ khoá: Machine translation
Semantic-oriented machine translation system
Semantic - enriched corpus
Năm xuất bản: thá-2021
Nhà xuất bản: Journal of Design Engineering
Trích dẫn: http://www.thedesignengineering.com/index.php/DE/article/view/3129
Tóm tắt: Although the machine translation (MT) quality has been significantly improved, it still fails to meet the practical use requirements, especially in the narrow fields of expertise and under-resource languages. To solve this problem, most studies have been focusing on improving algorithms, translation models and corpora. However, very few studies could address a very important aspect that greatly affects the translation quality, which is semantic-oriented translation. In this article, we propose a solution of building a context-based semantic-oriented MT system by improving the neural network translation model in combination with a big semantic-enriched corpus. The neural network translation approach allows understanding the semantics of the whole sentence based on context vector and phrase translation memory. Moreover, automatic translation results are pre-processed by enriching well-defined meanings to entities for creating the final translated text showing to users. This solution has been used to build an English-Vietnamese semantic-oriented machine translation system dedicated in the tourism field. The result shows that this solution gives good translations that are very helpful and useful to users.
Mô tả: Journal of Design Engineering; Vol 2021: Issue 07
Định danh: http://elib.vku.udn.vn/handle/123456789/2199
Bộ sưu tập: NĂM 2021

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.