Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/2686
Nhan đề: Apply CNN-XGBoost into Weather Image Recognition
Tác giả: Tran, Quy Nam
Phi, Cong Huy
Từ khoá: weather
image
CNN
XGBoost
Năm xuất bản: thá-2023
Nhà xuất bản: Vietnam-Korea University of Information and Communication Technology
Tùng thư/Số báo cáo: CITA;
Tóm tắt: This study implements some hybrid deep learning network models for weather image classification. This study proposes to apply a hybrid model, namely CNN-XGBoost model to test its performance, in comparison with other simple Convolutional Neural Network (CNN) model with softmax and in addition with the other hybrid models, namely CNN-SVC, CNN-Decision Tree, CNN-AdaBoost, Multi-layer Perceptron Classifier which are all applied into the same problem of weather image classification. The models apply an identical test dataset which is a set of 11 different image classes that are collected from different resources of weather images with various kinds of weather phenomena. The test results show that the CNN-XGBoost gives the best results, which is suitable for application in evaluating weather images. The aim of this study is to check whether what kind of hybrid deep learning has the best performance in the problem of weather image classification, not focus on accuracy improvement of the deep learning models in classification problem.
Mô tả: Proceeding of The 12th Conference on Information Technology and It's Applications (CITA 2023); pp: 158-168.
Định danh: http://elib.vku.udn.vn/handle/123456789/2686
ISBN: 978-604-80-8083-9
Bộ sưu tập: CITA 2023 (National)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.