Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/3193
Nhan đề: Recommendation System with Artificial Intelligence for Welding Quality Improvement
Tác giả: Tran, Trung Tin
Jang, Hee-Dong
Nguyen, Vu Anh Quang
Từ khoá: Resistance spot welding
Recommendation system
SVM
The welding quality prediction and improvement
Năm xuất bản: thá-2022
Nhà xuất bản: Springer Nature
Tóm tắt: This paper proposes the recommendation system (RS) to support the welding quality improvement system (WQIS) with artificial intelligence (AI). The proposed RS is applied to make suggestions for beginners and experienced workers about the welding quality predictions based on weld button size and the welding quality improvement by increasing welding current. The goal of the paper aims to develop an RS that has the ability to learn, analyze, predict and make these suggestions to humans through AI. Support Vector Machines (SVM) have been employed to predict the welding quality with impact parameters such as instantaneous (IHR), electrode tip diameter (De), and the status of welding current (Iw ) during the operation of the resistance spot welding (RSW) machine. The practical experiments are set up with an RSW machine using an AC inverter on Galvanized (GI) steel to collect the dataset for the SVM model. Through the experimental result, the effectiveness of the utility application is validated. In addition, these experimental results should be helpful for developing the high-performance RSW machine with AI applications in practice.
Mô tả: International Conference on Intelligence of Things (ICIT 2022); Lecture Notes on Data Engineering and Communications Technologies, Vol.148; pp: 226-235
Định danh: https://doi.org/10.1007/978-3-031-15063-0_21
http://elib.vku.udn.vn/handle/123456789/3193
ISBN: 978-3-031-15063-0 (e)
Bộ sưu tập: NĂM 2022

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.