Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/3233
Nhan đề: | Face Mask-Wearing Classification Using Transfer Learning Technique with MobileNet V2 |
Tác giả: | Pham, Nguyen Minh Nhut |
Từ khoá: | COVID-19 masked face detection face mask classification face mask recognition Deep Learning |
Năm xuất bản: | thá-2022 |
Nhà xuất bản: | Tạp chí Khoa học và Công nghệ Trường Đại học Quảng Bình |
Tóm tắt: | The COVID-19 pandemic has adversely affected the global economy, politics, society, and other areas. It has dramatically led to a loss of human lives worldwide and is continuing to have a heavy impact on people's health and living conditions. In order to avoid the spread of this pandemic, mask-wearing is required by law or regulation in most places, especially indoors public places. Using Deep Learning techniques to detect and authenticate people wearing masks which can help recognize patterns or behavior of the public, contributing to limiting the rapid spread of COVID-19 pandemic is becoming effective, beneficial, and widespread. In spite of the fact that wearing face masks incorrectly will not protect ourselves, especially children, from virus transmission and will reduce the effectiveness of COVID-19 prevention, a limited study has been done to solve the problem of mask-wearing. We use the technique of transfer learning with MobileNetV2 to train the model from the Face Mask Label Dataset (FMLD) and Flickr Faces HQ (FFHQ) dataset to not only detect if a mask is used or not, but also classify the status of mask wearing over the faces. The results show that the trainning accuracy of experiment model is 99% |
Mô tả: | Tạp chí Khoa học và Công nghệ, Trường Đại học Quảng Bình; T.11, S.4. trang 117-125. |
Định danh: | http://elib.vku.udn.vn/handle/123456789/3233 |
ISSN: | 0866-7683 |
Bộ sưu tập: | NĂM 2022 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.