Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/3995
Nhan đề: DaNangVMD: Vietnamese Speech Mispronunciation Detection
Nhan đề khác: DaNangVMD: Nhận diện phát âm sai tiếng Việt
Tác giả: Nguyen, Ket Doan
Tran, Nguyen Anh
Vo, Van Nam
Nguyen, Tran Tien
Le, Pham Tuyen
Nguyen, Quoc Vuong
Nguyen, Huu Nhat Minh
Từ khoá: Mispronunciation Detection
Multimodal Embedding
Vietnamese Speech Recognition
Năm xuất bản: thá-2024
Nhà xuất bản: Journal of Infomation & Communications
Tóm tắt: Automatic Speech Recognition, also known as ASR, has grown exponentially over the past decade and is used to recognize and translate human speech into readable text automatically. However, Vietnamese Speech Recognition faces critical challenges such as frequent mispronunciations as well as a huge variant in Vietnamese speech. In this work, we dive into the difficult challenge of Mispronunciation Detection (MD) in the Vietnamese language. As such a tonal language, Vietnamese is not only based on consonants and vowels but also on variations in pitch or tone during pronunciation. In this paper, we propose DaNangVMD model for detecting mispronunciations in Vietnamese speech based on the audio speech and canonical transcript. By leveraging multi-head attention-based multimodal representation from the embeddings of the phonetic encoder and linguistic encoder, DaNangVMD aims to provide a robust solution for accurate mispronunciation detection and diagnosis. Throughout the extensive evaluation, the proposed DaNangVMD exhibits superior performances rather than that of the PAPL baseline models by 15% in F1 score and 13% in accuracy.
Mô tả: Research and Development on Information and Communication Technology; pp: 49-55.
Định danh: https://doi.org/10.32913/mic-ict-research-vn.v2024.n1.1271
https://ictmag.vn/cntt-tt/article/view/1271/566
https://elib.vku.udn.vn/handle/123456789/3995
ISSN: 1859-3526
Bộ sưu tập: NĂM 2024

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.