Please use this identifier to cite or link to this item:
https://elib.vku.udn.vn/handle/123456789/982
Title: | Tối ưu hóa tập luật mờ hướng dữ liệu bằng giải pháp rút gọn tập thuộc tính dữ liệu đầu vào |
Authors: | Nguyễn, Đức Hiển |
Keywords: | Mô hình mờ Tập luật mờ Bài toán dự báo |
Issue Date: | 2019 |
Publisher: | Nhà xuất bản Đà Nẵng |
Abstract: | Trích xuất tập luật mờ từ dữ liệu bằng công cụ máy học là hướng tiếp cận phổ biến để xây dựng cơ sở luật cho các mô hình mờ. Vấn đề tối ưu hóa các tập luật mờ trích xuất từ dữ liệu vẫn đang được tiếp tục quan tâm nghiên cứu giải quyết, đặc biệt là tăng tính diễn dịch của tập luật. Trong bài báo này, tác giả đề xuất kết hợp giải pháp lựa chọn tập thuộc tính mRMR (minimal-redundancymaximal-relevance criterion) trong quá trình xử lý dữ liệu để có thể cải thiện tính diễn dịch của tập luật trích xuất được. Giải pháp đề xuất được đưa vào để xây dựng một mô hình nhiều giai đoạn ứng dụng giải quyết một bài toán dự báo cụ thể và được thực nghiệm trên dữ liệu thật để chứng tỏ hiệu quả dự báo. |
Description: | Bài báo khoa học; từ trang 230-238 |
URI: | http://elib.vku.udn.vn/handle/123456789/982 |
Appears in Collections: | CITA 2019 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.