Page 112 - Kỷ yếu hội thảo khoa học lần thứ 12 - Công nghệ thông tin và Ứng dụng trong các lĩnh vực (CITA 2023)
P. 112
96
1. Tammina, S. (2019). Transfer learning using VGG-16 with Deep Convolutional Neural
Network for Classifying Images. International Journal of Scientific and Research
Publications, 9(10), 1-8. DOI: 10.29322/IJSRP.9.10.2019.p9420.
2. Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image
Recognition, arXiv:1512.03385, 2015.
3. Tafadzwa L. Chaunzwa, Ahmed Hosny, Yiwen Xu, Andrea Shafer , Nancy Diao , Michael
Lanuti , David C. Christiani, Raymond H. Mak & Hugo J. W. L.Aerts - Deep learning
classifcation of lung cancer histology using CT images.
1
2
4
3
4. Yuan-Hao Chan , Yong-Zhi Zeng , Hsien-Chu Wu , Ming-Chi Wu , and Hung-Min Sun -
Effective Pneumothorax Detection for Chest X-Ray Images Using Local Binary Pattern and
Support Vector Machine - J Healthc Eng. 2018.
5. Enireddy, V., Kumar, M. J. K., Donepudi, B., & Karthikeyan, C. (2020). Detection of
COVID-19 using Hybrid ResNet and SVM. Journal of Ambient Intelligence and Humanized
Computing, 11(2), 1-7. https://doi.org/10.1007/s12652-020-02745-1.
6. Dalal, N., &Triggs, B. (2005). Histograms of oriented gradients for human detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 886-
893).
7. Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and
other kernel-based learning methods. Cambridge University Press.
8. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012), ImageNet Classification with Deep
Convolutional Neural Networks, In Advances in Neural Information Processing Systems,
pp. 1097 1105.
9. Dong, C., Loy, C. C., He, K., and Tang, X. (2015), Image super-resolution using deep
convolutional networks, CoRR, abs/1501.00092.
CITA 2023 ISBN: 978-604-80-8083-9