Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/3242
Nhan đề: | Using Stochastic Gradient Descent On Parallel Recommender System with Stream Data |
Tác giả: | Nguyen, Si Thin Van, Hung Trong Vo, Ngoc Dat Ngo, Le Quan |
Từ khoá: | Computational modeling Stochastic processes Training data Data science Real-time systems Complexity theory Parallel algorithms |
Năm xuất bản: | thá-2022 |
Nhà xuất bản: | IEEE |
Tóm tắt: | Stochastic gradient descent (SGD) and Alternating least squares (ALS) are two popular algorithms applied on matrix factorization. Moreover recent researches pay attention to how to parallelize them on daily increading data. About large-scale datasets issue, however, SGD still suffers with low convergence by depending on the parameters. While ALS is not scalable due to the cubic complexity with the target time rank. The remaining issue, how to operate system, almost parallel algorithms conduct matrix factorization on a batch of training data while the system data is real-time. In this work, the authors proposed FSGD algorithm overcomes drawbacks in large-scale issue base on coordinate descent, a novel optimization approach. According to that, algorithm updates rank-one factors one by one to get faster and more stable convergence than SGD and ALS. In addition, FSGD is feasible to paralleize and operates on a stream of incoming data. The experimental results show that FSGD performs much better in solving the matrix factorization issue compared to existing state-of-the-art parallel models. |
Mô tả: | 2022 IEEE/ACIS, 7th International Conference on Big Data, Cloud Computing, and Data Science (BCD); pp: 88-93 |
Định danh: | https://ieeexplore.ieee.org/document/9900664 http://elib.vku.udn.vn/handle/123456789/3242 |
ISBN: | 978-1-6654-6582-3 |
Bộ sưu tập: | NĂM 2022 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.