Page 159 - Kỷ yếu hội thảo khoa học lần thứ 12 - Công nghệ thông tin và Ứng dụng trong các lĩnh vực (CITA 2023)
P. 159

143


                     là do PHUI-Miner                                       -






                     6

                     Trong bài báo này, chúng tôi




                                                                   .                               7


                                    .






                      1.  Fournier-Viger  P.,  Zhang  Y.,  Lin  J.C.-W.,  Dinh  D.T.,  Bac  Le  H.:  Mining  correlated
                         high-utility itemsets using various measures. Logic Journal of the IGPL, 28(1), pp. 19 32,
                         (2020).
                      2.  Fournier-Viger  P.,  Wang  Y.,  Lin  J.C.-W.,  Luna  J.M.,  Ventura  S.:  Trends  in  Artificial
                         Intelligence  Theory  and  Applications.  Artificial  Intelligence  Practices.  Springer,  Cham,
                         Mining cross-level high utility itemsets, pp. 858 871, (2020).
                      3.  Tung  N.T.,  Nguyen  L.T.T.,  Nguyen,  T.D.D.,  Fourier-Viger  P.,  Nguyen  N.  T.,  Vo  B.:
                         Efficient  mining  of  cross-level  high-utility  itemsets  in  taxonomy  quantitative  databases.
                         Information Sciences, 587, pp. 41 62, (2022).
                      4.  Song,  W.,  Zheng,  C.,  SFU-CE:  Skyline  Frequent-Utility  Itemset  Discovery  Using  the
                         Cross-Entropy Method. In: , et al. Intelligent Data Engineering and Automated Learning,
                         Lecture Notes in Computer Science, vol 13113. Springer, Cham, pp 354 366, (2021).
                      5.   Song W., Zheng C., Fournier-Viger P.: Trends in Artificial Intelligence, Springer, Cham,
                         Mining skyline frequent-utility itemsets with utility filtering, pp. 411 424, (2021).
                      6.  Fournier-Viger P., Yang Y., Lin J.C.W., Frnda, J.: Advances in Knowledge Discovery and
                         Data Mining. Springer, Cham, Mining locally trending high utility itemsets, pp. 99 111,
                         (2020).
                      7.  Nouioua M., Fournier-Viger P., Wu C.W., Lin J.C.W., Gan W.: FHUQI-Miner: Fast high
                         utility quantitative itemset mining. Applied Intelligence, 51, pp. 6785 6809, (2021).
                      8.  Nouioua M., Fournier-Viger P., Qu J.F., Lin J.C.W., Gan W., Song W.: CHUQI-Miner:
                         Mining  correlated  quantitative  high  utility  itemsets.  Proceedings  of  International
                         Conference on Data Mining Workshops, pp. 599 606, (2021).
                      9.  Fournier-Viger P., Zhang Y., Chun-Wei L. J., Fujita H., Koh Y.S.: Mining local and peak
                         high utility itemsets. Information Sciences, vol. 481, pp. 344 367, (2019).
                      10. V. Nofong and P. Owiredu Okai and H. Abdel-Fatao and S. Kwashie and M. Bewong and
                         J.  Wondoh,  Towards  Efficient  Discovery  of  Target  High  Utility  Itemsets,  IEEE
                         International Conference on Data Mining Workshops (ICDMW), pp. 517-526, (2022).







                     ISBN: 978-604-80-8083-9                                                  CITA 2023
   154   155   156   157   158   159   160   161   162   163   164