Page 184 - Kỷ yếu hội thảo khoa học lần thứ 12 - Công nghệ thông tin và Ứng dụng trong các lĩnh vực (CITA 2023)
P. 184

168


                     used a simple CNN model with 3 convolutional layers as feature extractor and then
                     they are built on the same network architecture with respective different classifiers.
                     All  of  them  are  employed  in  the  same  training,  validation  and  test  set  of  weather
                     images.  The  outcomes  of  experiments  show  that  the  CNN-XGBoost  has  the  best
                     performance among other 5 models in the problem of weather image classification.


                     References


                      1.  Xiao, H., Zhang, F., Shen, Z., Wu, K., & Zhang, J.: Classification of weather phenomenon
                         from  images  by  using  deep  convolutional  neural  network.  Earth  and  Space  Science,  8,
                         https://doi.org/10.1029/2020EA001604 (2021).
                      2.  Mohammad F. N. & Selvia F. K.: Weather image classification using convolutional neural
                         network  with  transfer  learning.  AIP  Conference  Proceedings,  Volume  2470,  Issue  1,
                         https://doi.org/10.1063/5.0080195 (2022).
                      3.  Mohamed  R.  I,  James  H.  and  Tao  C.:  WeatherNet:  Recognising  Weather  and  Visual
                         Conditions from Street-Level Images Using Deep Residual Learning. International Journal
                         of Geo-Information, ISSN: 2220-9964, ISPRS - International Society for Photogrammetry
                         and Remote Sensing (2019).
                      4.  Khan, M.N.; Ahmed, M.M.: Weather and surface condition detection based on road-side
                         webcams:  Application  of  pre-trained  convolutional  neural  network. Int.  J.  Transp.  Sci.
                         Technol. vol. 11, pp. 468-483 (2021).
                      5.  Minhas  S,  Khanam  Z,  Ehsan  S,  McDonald-Maier  K,  Hernández-Sabaté  A.:  Weather
                         Classification  by  Utilizing  Synthetic  Data.  22(9):3193.  doi:  10.3390/s22093193.  PMID:
                         35590881; (2022).
                      6.  Thongsuwan S., Jaiyen S., Padcharoen A., Agarwal P.: ConvXGB: A new deep learning
                         model for classification problems based on CNN and XGBoost. Nuclear Engineering and
                         Technology, ISSN 1738-5733, Vol 53, Issue 2, Page: 522-531 (2021).
                      7.  Thiyagarajan Sahana: Performance Comparison of Hybrid CNN-SVM and CNN-XGBoost
                         models  in  Concrete  Crack  Detection.  Theses Masters,  Technological  University  Dublin,
                         https://arrow.tudublin.ie/scschcomdis/195/ (2019).
                      8.  Huang, G-L, He, J, Xu, Z, Huang, G.: A combination model based on transfer learning for
                         waste classification, Concurrency Computat Pract Exper, https://doi.org/10.1002/cpe.5751
                         (2020).
                      9.  Chen and Guestrin: XGBoost: A Scalable Tree Boosting System.
                               nd
                         the  22   ACM  SIGKDD  International  Conference  on  Knowledge  Discovery  and  Data
                         Mining, Pages 785 794, https://doi.org/10.1145 /2939672.2939785 (2016).
                      10. Xiao,  Haixia,  "Weather  phenomenon  database  (WEAPD)",  https://doi.org/10.7910
                         /DVN/M8JQCR, Harvard Dataverse, V1 (2021).





















                     CITA 2023                                                   ISBN: 978-604-80-8083-9
   179   180   181   182   183   184   185   186   187   188   189