Page 48 - Kỷ yếu hội thảo khoa học lần thứ 12 - Công nghệ thông tin và Ứng dụng trong các lĩnh vực (CITA 2023)
P. 48

32


                     microcontroller kit and the system can classify the labeled audio with an accuracy of
                     about 97%. One of the main limitations of this research is the scare of dataset that sig-
                     nificantly affect the overall performance and ongoing research are being performed
                     with dataset built based on the real hardware. Moreover, despite the positive result in
                     the training process, further work should be carried out to investigate the stability of
                     the model when running on different hardware devices, rather than the digital MEM
                     microphone MPD401 in this work, and in noisy environments (e.g., with different type
                     of noise form the surrounding).



                     References


                      1.  R.  Togneri,  T.  Ogunfunmi,  M.  Narasimha:  Speech  and  Audio  Processing  for  Coding,
                         Enhancement and Recognition. Springer, New York (2014).
                      2.  R.  Arandjelovic  and  A.  Zisserman:  Look,  listen  and  learn.  In  Proceedings of  the  IEEE
                         international conference on computer vision (ICCV), pp. 609 617. Venice (2017).
                      3.  M. Valenti, S. Squartini, A. Diment, G. Parascandolo, and T. Virtanen: A convolutional
                         neural  network  approach  for  acoustic  scene  classification.  In:  Proceedings  of  2017
                         International Joint Conference on Neural Networks (IJCNN), pp. 1547 1554, IEEE Xplore
                         (2017).
                      4.  M.  Huzaifah:  Comparison  of  time-frequency  representations  for  environmental  sound
                         classification  using  convolutional  neural  networks.  arXiv  preprint  arXiv:1706.07156.
                         (2017).
                      5.  J. J. Huang and J. J. A. Leanos: AclNet: Efficient end-to-end audio classification CNN.
                         arXiv preprint arXiv:1811.06669. (2018).
                      6.  X. Zhang, Y. Zou, and W. Wang: LD-CNN: A lightweight dilated convolutional neural
                         network for environmental sound classification. In Proceedings of 2018 24th International
                         Conference on Pattern Recognition (ICPR), pp. 373 378. (2018).
                      7.  F. Naccari, I. Guarneri, S. Curti, A. A. Savi: Embedded acoustic scene classification for low
                         power microcontroller devices. In: Proceedings of Detection and Classification of Acoustic
                         Scenes and Events 2020 (DCASE2020), Tokyo (2020).
                      8.  Mesaros,  A.,  Heittola,  T.,  Virtanen,  T:  Acoustic  scene  classification:  an  overview  of
                         DCASE 2017 challenge entries. In: 2018 16th International Workshop on Acoustic Signal
                         Enhancement (IWAENC), pp. 411-415. IEEE, (2018).
                      9.  M. Meyer, T. Farei-Campagna, A. Pasztor, R. Da Forno, T. Gsell, J. Faillettaz, A. Vieli,
                         S. Weber, J. Beutel, L. Thiele: Event-triggered natural hazard monitoring with convolutional
                         neural  networks  on  the  edge.  In:  Proceedings  of  the  18th  International  Conference  on
                         Infomation Processing in Sensor Networks (IPSN '19), pp. 73 84, ACM, (2019).
                     10. Developersbreach,  https://developersbreach.com/convolution-neural-network-deep-learn-
                         ing/, last accessed 2023/01/11.
                     11. S.A. Arusha, Scream Dataset, https://www.kaggle.com/datasets/sanzidaakterarusha/scream-
                         dataset, last accessed 2023/01/11.
                     12. ST  Electronic  homepage,  https://www.st.com/en/embedded-software/x-cube-ai.html,  last
                         accessed 2023/01/11.











                     CITA 2023                                                   ISBN: 978-604-80-8083-9
   43   44   45   46   47   48   49   50   51   52   53