Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/2310
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorLe, Nguyen Tuan Thanh-
dc.date.accessioned2022-08-17T01:44:44Z-
dc.date.available2022-08-17T01:44:44Z-
dc.date.issued2022-07-
dc.identifier.issn978-604-84-6711-1-
dc.identifier.urihttp://elib.vku.udn.vn/handle/123456789/2310-
dc.descriptionThe 11th Conference on Information Technology and its Applications; Topic: Data Science and AI; pp.33-42.vi_VN
dc.description.abstractRecently, the Reinforcement Learning (RL) approach is proven efficiently in several domains (e.g., Atari games, Dota 2 game, Go, Self-driving cars, Protein folding, ...), especially with theinvention of Deep Reinforcement Learning (DRL). However, RL algorithms involve mostly the learning process of one single agent. In the real world, complex systems normally consist of multiple agents. In these systems, a hidden phenomenon might be exposed by the interaction of several agents, not by only one agent. Applying RL algorithms, especially DRL, in Multi-Agent Systems (MAS) is a potential approach to help us to look insight into the world. In this paper, we present a traffic congestion model for the one-way multi-lane highways and experiment with four RL algorithms in this setting.vi_VN
dc.language.isoenvi_VN
dc.publisherDa Nang Publishing Housevi_VN
dc.subjectReinforcement Learningvi_VN
dc.subjectMulti-Agent Systemsvi_VN
dc.subjectMulti-Agent Reinforcement Learningvi_VN
dc.subjectTraffic Simulationvi_VN
dc.titleExperimenting Reinforcement Learning Algorithms in a Multi-Agent Setting: A Case Study of Traffic Model for the One-Way Multi-Lane Highwaysvi_VN
dc.typeWorking Papervi_VN
Bộ sưu tập: CITA 2022

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.