Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/2746
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorNguyen, Thanh Long-
dc.contributor.authorHa, Thi Minh Phuong-
dc.contributor.authorNguyen, Thanh Binh-
dc.date.accessioned2023-09-26T02:23:08Z-
dc.date.available2023-09-26T02:23:08Z-
dc.date.issued2023-07-
dc.identifier.isbn978-3-031-36886-8-
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-3-031-36886-8_6-
dc.identifier.urihttp://elib.vku.udn.vn/handle/123456789/2746-
dc.descriptionLecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 62-73.vi_VN
dc.description.abstractSoftware fault prediction aims to classify whether the module is defective or not-defective. In software systems, there are some software metrics may contain irrelevant or redundant information that leads to negative impact on the performance of the fault prediction model. Therefore, feature selection is an method that several studies have addressed to reduce computation time, improve prediction performance and provide a better understanding of data in machine learning. Additionally, the presence of imbalanced classes is one of the most challenge in software fault prediction. In this study, we examined the effectiveness of six different wrapper feature selection including Genetic Algorithm, Particle Swarm Optimization, Whale Optimization Algorithm, Cuckoo Search, Mayfly Algorithm and Binary Bat Algorithm for selecting the optimal subset of features. Then, we applied VanilaGAN to train the dataset with optimal features for handling the imbalanced problem. Subsequently, these generated training dataset and the testing dataset are fed to the machine learning techniques. Experimental validation has been done on five dataset collected from Promise repository and Precision, Recall, F1-score, and AUC are evaluation performance measurements.vi_VN
dc.language.isoenvi_VN
dc.publisherSpringer Naturevi_VN
dc.subjectSoftware fault predictionvi_VN
dc.subjectfeature selectionvi_VN
dc.subjectWrappervi_VN
dc.subjectVanillaGANvi_VN
dc.subjectdatasetvi_VN
dc.titleA Comparative Study of Wrapper Feature Selection Techniques in Software Fault Predictionvi_VN
dc.typeWorking Papervi_VN
Bộ sưu tập: CITA 2023 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.