Please use this identifier to cite or link to this item: https://elib.vku.udn.vn/handle/123456789/4275
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDo, Thanh Nghi-
dc.contributor.authorVo, Tri Thuc-
dc.date.accessioned2024-12-04T07:08:49Z-
dc.date.available2024-12-04T07:08:49Z-
dc.date.issued2024-11-
dc.identifier.isbn978-3-031-74126-5-
dc.identifier.urihttps://elib.vku.udn.vn/handle/123456789/4275-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-74127-2_12-
dc.descriptionLecture Notes in Networks and Systems (LNNS,volume 882); The 13th Conference on Information Technology and Its Applications (CITA 2024) ; pp: 136-146.vi_VN
dc.description.abstractIn this paper, we propose a novel federated learning of random oblique stumps (FL-ROS) for handling the ImageNet challenge having 1,281,167 images and 1,000 classes. Our FL-ROS algorithm trains an ensemble random oblique stumps on Raspberry Pi Zeros (RPi Zeros) without exchanging data among RPi Zeros, to classify the ImageNet dataset. The multi-class Proximal Support Vector Machines (MC-PSVM) uses the One-Versus-All (OVA) multi-class strategy and the under-sampling technique for independently learning random oblique stumps from the local training subset stored on RPi Zeros. The empirical test results on the ImageNet dataset show that our FL-ROS algorithm with 4 RPi Zeros (Quad-core 64-bit ARM Cortex-A53 processor clocked at 1GHz and 512MB RAM) is faster and more accurate than the state-of-the-art SVM algorithms run on a PC (Intel(R) Core i7-4790 CPU, 3.6 GHz, 4 cores, 32GB RAM).vi_VN
dc.language.isoenvi_VN
dc.publisherSpringer Naturevi_VN
dc.subjectFL-ROS algorithmvi_VN
dc.subjectImageNet datasetvi_VN
dc.titleFederated Learning of Random Oblique Stumps Tailored on the Raspberry Pi Zero for the ImageNet Challengevi_VN
dc.typeWorking Papervi_VN
Appears in Collections:CITA 2024 (International)

Files in This Item:

 Sign in to read



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.