Please use this identifier to cite or link to this item:
https://elib.vku.udn.vn/handle/123456789/4275
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Do, Thanh Nghi | - |
dc.contributor.author | Vo, Tri Thuc | - |
dc.date.accessioned | 2024-12-04T07:08:49Z | - |
dc.date.available | 2024-12-04T07:08:49Z | - |
dc.date.issued | 2024-11 | - |
dc.identifier.isbn | 978-3-031-74126-5 | - |
dc.identifier.uri | https://elib.vku.udn.vn/handle/123456789/4275 | - |
dc.identifier.uri | https://doi.org/10.1007/978-3-031-74127-2_12 | - |
dc.description | Lecture Notes in Networks and Systems (LNNS,volume 882); The 13th Conference on Information Technology and Its Applications (CITA 2024) ; pp: 136-146. | vi_VN |
dc.description.abstract | In this paper, we propose a novel federated learning of random oblique stumps (FL-ROS) for handling the ImageNet challenge having 1,281,167 images and 1,000 classes. Our FL-ROS algorithm trains an ensemble random oblique stumps on Raspberry Pi Zeros (RPi Zeros) without exchanging data among RPi Zeros, to classify the ImageNet dataset. The multi-class Proximal Support Vector Machines (MC-PSVM) uses the One-Versus-All (OVA) multi-class strategy and the under-sampling technique for independently learning random oblique stumps from the local training subset stored on RPi Zeros. The empirical test results on the ImageNet dataset show that our FL-ROS algorithm with 4 RPi Zeros (Quad-core 64-bit ARM Cortex-A53 processor clocked at 1GHz and 512MB RAM) is faster and more accurate than the state-of-the-art SVM algorithms run on a PC (Intel(R) Core i7-4790 CPU, 3.6 GHz, 4 cores, 32GB RAM). | vi_VN |
dc.language.iso | en | vi_VN |
dc.publisher | Springer Nature | vi_VN |
dc.subject | FL-ROS algorithm | vi_VN |
dc.subject | ImageNet dataset | vi_VN |
dc.title | Federated Learning of Random Oblique Stumps Tailored on the Raspberry Pi Zero for the ImageNet Challenge | vi_VN |
dc.type | Working Paper | vi_VN |
Appears in Collections: | CITA 2024 (International) |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.