Please use this identifier to cite or link to this item: https://elib.vku.udn.vn/handle/123456789/5009
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorLe, Thi Thu Nga-
dc.contributor.authorNguyen, Duc Hao-
dc.contributor.authorNguyen, Thi Ngoc Lien-
dc.date.accessioned2025-06-05T03:07:46Z-
dc.date.available2025-06-05T03:07:46Z-
dc.date.issued2025-06-05-
dc.identifier.urihttps://elib.vku.udn.vn/handle/123456789/5009-
dc.descriptionKỷ yếu Nghiên cứu khoa học của sinh viên Trường Đại học Công nghệ Thông tin và Truyền thông Việt - Hàn năm học 2024-2025; trang 41-45.vi_VN
dc.description.abstractThis paper proposes a semi-supervised learning-based approach to segment and classify overlapping cervical cells. The segmentation model is based on DoNet, which effectively separates intersecting cell regions using a decompose-and-recombine strategy. For classification, we apply a Semi-FixMatch model that leverages unlabeled data with pseudo-labeling and consistency regularization. Experiments on the ISBI2014 dataset show that our method achieves competitive performance even with limited labeled data, accurately identifying abnormal cells based on the nucleus-to-cytoplasm (N/C) ratio. The proposed solution enhances the reliability of automated cytology analysis and reduces the burden of manual labeling.vi_VN
dc.language.isoenvi_VN
dc.publisherVietnam-Korea University of Information and Communication Technologyvi_VN
dc.relation.ispartofseriesNCKHSV;-
dc.subjectDe-overlapping cellsvi_VN
dc.subjectoverlapping cell segmentationvi_VN
dc.subjectcervical cell N/C ratiovi_VN
dc.titleA study on semi-supervised solutions for overlapped cell classificationvi_VN
dc.title.alternativeNghiên cứu giải pháp cho phân lớp tế bào bị phủ lấp dựa trên học bán giám sátvi_VN
dc.typeWorking Papervi_VN
Appears in Collections:SV NCKH năm học 2024-2025

Files in This Item:

 Sign in to read



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.