Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/6199Toàn bộ biểu ghi siêu dữ liệu
| Trường DC | Giá trị | Ngôn ngữ |
|---|---|---|
| dc.contributor.author | Le, Thi Thu Nga | - |
| dc.contributor.author | Doan, Phuoc Dat | - |
| dc.contributor.author | Le, Huu Dat | - |
| dc.contributor.author | Hoang, Ngoc Hieu | - |
| dc.contributor.author | Nguyen, Van Quang Truong | - |
| dc.date.accessioned | 2026-01-19T09:43:26Z | - |
| dc.date.available | 2026-01-19T09:43:26Z | - |
| dc.date.issued | 2026-01 | - |
| dc.identifier.isbn | 978-3-032-00972-2 (e) | - |
| dc.identifier.issn | 978-3-032-00971-5 (p) | - |
| dc.identifier.uri | https://doi.org/10.1007/978-3-032-00972-2_36 | - |
| dc.identifier.uri | https://elib.vku.udn.vn/handle/123456789/6199 | - |
| dc.description | Lecture Notes in Networks and Systems (LNNS,volume 1581); The 14th Conference on Information Technology and Its Applications (CITA 2025) ; pp: 491-503 | vi_VN |
| dc.description.abstract | Cervical cancer remains one of the most common and preventable health threats to women worldwide. Early diagnosis significantly improves treatment outcomes. Automated abnormal cell screening facilitates early detection and diagnosis of cervical cancer, aiding in disease prevention and improving patient survival rates. Prior research on cervical cell imaging has primarily focused on developing and training deep learning models tailored specifically for cervical cancer classification. However, a more computationally efficient approach that also reduces the risk of overfitting is transfer learning through fine-tuning a lightweight pre-trained model. This study proposes various fine-tuning strategies applied to cervical cancer cytology datasets, specifically CRIC and LBC, to identify the most optimal approach. Experimental results demonstrate that a hybrid fine-tuning strategy achieves a classification accuracy of up to 99%. In addition to offering insights into the application of transfer learning on lightweight models for cervical cell classification, this study establishes a strong baseline for future research in automated cervical cancer diagnosis. | vi_VN |
| dc.language.iso | en | vi_VN |
| dc.publisher | Springer Nature | vi_VN |
| dc.subject | Deep learning | vi_VN |
| dc.subject | Transfer learning | vi_VN |
| dc.subject | Fine-tuning | vi_VN |
| dc.subject | Lightweight models | vi_VN |
| dc.subject | Cervical cells | vi_VN |
| dc.subject | Classification | vi_VN |
| dc.title | Fine-Tuning Strategies for Lightweight Models in Cervical Cells Classification | vi_VN |
| dc.type | Working Paper | vi_VN |
| Bộ sưu tập: | CITA 2025 (International) | |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.