Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/6199
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorLe, Thi Thu Nga-
dc.contributor.authorDoan, Phuoc Dat-
dc.contributor.authorLe, Huu Dat-
dc.contributor.authorHoang, Ngoc Hieu-
dc.contributor.authorNguyen, Van Quang Truong-
dc.date.accessioned2026-01-19T09:43:26Z-
dc.date.available2026-01-19T09:43:26Z-
dc.date.issued2026-01-
dc.identifier.isbn978-3-032-00972-2 (e)-
dc.identifier.issn978-3-032-00971-5 (p)-
dc.identifier.urihttps://doi.org/10.1007/978-3-032-00972-2_36-
dc.identifier.urihttps://elib.vku.udn.vn/handle/123456789/6199-
dc.descriptionLecture Notes in Networks and Systems (LNNS,volume 1581); The 14th Conference on Information Technology and Its Applications (CITA 2025) ; pp: 491-503vi_VN
dc.description.abstractCervical cancer remains one of the most common and preventable health threats to women worldwide. Early diagnosis significantly improves treatment outcomes. Automated abnormal cell screening facilitates early detection and diagnosis of cervical cancer, aiding in disease prevention and improving patient survival rates. Prior research on cervical cell imaging has primarily focused on developing and training deep learning models tailored specifically for cervical cancer classification. However, a more computationally efficient approach that also reduces the risk of overfitting is transfer learning through fine-tuning a lightweight pre-trained model. This study proposes various fine-tuning strategies applied to cervical cancer cytology datasets, specifically CRIC and LBC, to identify the most optimal approach. Experimental results demonstrate that a hybrid fine-tuning strategy achieves a classification accuracy of up to 99%. In addition to offering insights into the application of transfer learning on lightweight models for cervical cell classification, this study establishes a strong baseline for future research in automated cervical cancer diagnosis.vi_VN
dc.language.isoenvi_VN
dc.publisherSpringer Naturevi_VN
dc.subjectDeep learningvi_VN
dc.subjectTransfer learningvi_VN
dc.subjectFine-tuningvi_VN
dc.subjectLightweight modelsvi_VN
dc.subjectCervical cellsvi_VN
dc.subjectClassificationvi_VN
dc.titleFine-Tuning Strategies for Lightweight Models in Cervical Cells Classificationvi_VN
dc.typeWorking Papervi_VN
Bộ sưu tập: CITA 2025 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.