Please use this identifier to cite or link to this item: https://elib.vku.udn.vn/handle/123456789/6202
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTran, Xuan Thang-
dc.contributor.authorTu, Ngoc Thao-
dc.contributor.authorHo, Thi Phuong-
dc.contributor.authorDang, Dai Tho-
dc.date.accessioned2026-01-20T01:47:29Z-
dc.date.available2026-01-20T01:47:29Z-
dc.date.issued2026-01-
dc.identifier.isbn978-3-032-00971-5 (p)-
dc.identifier.isbn978-3-032-00972-2 (e)-
dc.identifier.urihttps://doi.org/10.1007/978-3-032-00972-2_33-
dc.identifier.urihttps://elib.vku.udn.vn/handle/123456789/6202-
dc.descriptionLecture Notes in Networks and Systems (LNNS,volume 1581); The 14th Conference on Information Technology and Its Applications (CITA 2025) ; pp: 445-457vi_VN
dc.description.abstractThis study investigates a semi-supervised approach to ABSA, addressing the challenges posed by limited labeled data through data augmentation and pseudo-labeling. Utilizing Sentence BERT with contextual embedding ‘RoBERTa-large’, our framework combines labeled data, augmented data, and pseudo-labeled data to enhance model performance. The data augmentation technique employs nlp textual augmentation for synonym replacement with words, which expands the training set while preserving sentiment labels. The pseudo-labeling process uses a threshold to assign sentiment labels to unlabeled data, allowing for more extensive model training without manual annotation. Our results demonstrate that the semi-supervised approach yields significant improvements in accuracy, with the model achieving 77.9% accuracy.vi_VN
dc.language.isoenvi_VN
dc.publisherSpringer Naturevi_VN
dc.subjectAspect-based sentiment analysisvi_VN
dc.subjectDeep learning modelsvi_VN
dc.subjectSemi-supervised learningvi_VN
dc.subjectData augmentationvi_VN
dc.subjectPseudo-labelingvi_VN
dc.titleA Semi-supervised Learning Approach for Aspect-Based Sentiment Analysis with Limited Datavi_VN
dc.typeWorking Papervi_VN
Appears in Collections:CITA 2025 (International)

Files in This Item:

 Sign in to read



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.