Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/6208
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorNguyen, Thanh Binh-
dc.contributor.authorCao, Thi Nham-
dc.contributor.authorNguyen, Van Tien-
dc.contributor.authorNguyen, Nhut Tien-
dc.date.accessioned2026-01-20T02:00:53Z-
dc.date.available2026-01-20T02:00:53Z-
dc.date.issued2026-01-
dc.identifier.isbn978-3-032-00971-5 (p)-
dc.identifier.isbn978-3-032-00972-2 (e)-
dc.identifier.urihttps://doi.org/10.1007/978-3-032-00972-2_27-
dc.identifier.urihttps://elib.vku.udn.vn/handle/123456789/6208-
dc.descriptionLecture Notes in Networks and Systems (LNNS,volume 1581); The 14th Conference on Information Technology and Its Applications (CITA 2025) ; pp: 359-371vi_VN
dc.description.abstractFault localization aims to automatically localize buggy files, a key step in debugging tasks. Traditional Information-Retrieval-based fault localization (IRFL) methods often struggle due to the lexical gap between bug reports and source code. Inspired by the ability of Large Language Models (LLMs) to process both natural language and programming language, we propose a hybrid fault localization approach that integrates LLM-driven information extraction, semantic search, and relevance-matching techniques to improve fault localization accuracy. Our method utilizes LLMs to extract key information from bug reports, including keywords (variable names, function names, class names), error message verbatims, and technical descriptions. With the extracted keywords, we compute lexical similarity scores between bug reports and source code files and then rank the source code files accordingly. We also utilize text embedding models to encode the extracted bug reports and source code files and compute their semantic similarity to construct a ranked list of suspected buggy files. This semantic ranking is combined with lexical ranking based on the best-rank selection strategy to achieve the final list. Our approach is evaluated on six real-world Java projects from the Bench4BL dataset. Experimental results demonstrate that our approach outperforms the baseline methods by a substantial margin in terms of Top-K, Mean Reciprocal Rank (MRR), and Mean Average Precision (MAP) metrics.vi_VN
dc.language.isoenvi_VN
dc.publisherSpringer Naturevi_VN
dc.subjectFault localizationvi_VN
dc.subjectLarge language modelsvi_VN
dc.subjectInformation retrievalvi_VN
dc.subjectSemantic similarityvi_VN
dc.titleA Hybrid Approach to Fault Localization: Integrating LLMs with IR-Based Methodsvi_VN
dc.typeWorking Papervi_VN
Bộ sưu tập: CITA 2025 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.