Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/6212Toàn bộ biểu ghi siêu dữ liệu
| Trường DC | Giá trị | Ngôn ngữ |
|---|---|---|
| dc.contributor.author | Bui, D. Hung | - |
| dc.contributor.author | Nguyen, P. H. Phuc | - |
| dc.contributor.author | Dang, Q. Vinh | - |
| dc.contributor.author | Huynh, Nga | - |
| dc.contributor.author | Vo, D. Hung | - |
| dc.contributor.author | Nguyen, S. T. Long | - |
| dc.contributor.author | Quan, T. Tho | - |
| dc.date.accessioned | 2026-01-20T02:12:54Z | - |
| dc.date.available | 2026-01-20T02:12:54Z | - |
| dc.date.issued | 2026-01 | - |
| dc.identifier.isbn | 978-3-032-00971-5 (p) | - |
| dc.identifier.isbn | 978-3-032-00972-2 (e) | - |
| dc.identifier.uri | https://doi.org/10.1007/978-3-032-00972-2_23 | - |
| dc.identifier.uri | https://elib.vku.udn.vn/handle/123456789/6212 | - |
| dc.description | Lecture Notes in Networks and Systems (LNNS,volume 1581); The 14th Conference on Information Technology and Its Applications (CITA 2025) ; pp: 303-316 | vi_VN |
| dc.description.abstract | Virtual Try-on (VTON or VITON) technology has become a cornerstone of e-commerce, offering users an immersive and personalized shopping experience. Recent advancements in diffusion models have improved the quality of try-on images. However, these models still rely heavily on the accuracy of input try-on masks, which are the masked regions used to instruct VTON models to generate the target clothing on. Furthermore, such approaches apply rule-based methods to produce try-on masks, which lack flexibility and can lead to distortion or incomplete clothing replacement, especially with unnatural poses or mixed clothes. To address these limitations, we introduce Auto-ARM, an innovative framework that employs an attention-based U-Net architecture with Attention Gate (AG) to dynamically refine the try-on masks based on the target outfit. This novel approach not only significantly enhances the generalization of mask-dependent VTON models but also delivers superior qualitative and quantitative results. Auto-ARM achieves state-of-the-art performance on benchmarks such as VITON-HD and DressCode, proving its potential for high-quality, real-world VTON applications. | vi_VN |
| dc.language.iso | en | vi_VN |
| dc.publisher | Springer Nature | vi_VN |
| dc.subject | Virtual try-on | vi_VN |
| dc.subject | Mask refinement | vi_VN |
| dc.subject | Attention U-Net | vi_VN |
| dc.title | Auto-ARM: An Autonomous Adaptive Mask Refinement Mechanism for Enhancing Naturalness in Virtual Try-On Models | vi_VN |
| dc.type | Working Paper | vi_VN |
| Bộ sưu tập: | CITA 2025 (International) | |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.