Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/6212
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorBui, D. Hung-
dc.contributor.authorNguyen, P. H. Phuc-
dc.contributor.authorDang, Q. Vinh-
dc.contributor.authorHuynh, Nga-
dc.contributor.authorVo, D. Hung-
dc.contributor.authorNguyen, S. T. Long-
dc.contributor.authorQuan, T. Tho-
dc.date.accessioned2026-01-20T02:12:54Z-
dc.date.available2026-01-20T02:12:54Z-
dc.date.issued2026-01-
dc.identifier.isbn978-3-032-00971-5 (p)-
dc.identifier.isbn978-3-032-00972-2 (e)-
dc.identifier.urihttps://doi.org/10.1007/978-3-032-00972-2_23-
dc.identifier.urihttps://elib.vku.udn.vn/handle/123456789/6212-
dc.descriptionLecture Notes in Networks and Systems (LNNS,volume 1581); The 14th Conference on Information Technology and Its Applications (CITA 2025) ; pp: 303-316vi_VN
dc.description.abstractVirtual Try-on (VTON or VITON) technology has become a cornerstone of e-commerce, offering users an immersive and personalized shopping experience. Recent advancements in diffusion models have improved the quality of try-on images. However, these models still rely heavily on the accuracy of input try-on masks, which are the masked regions used to instruct VTON models to generate the target clothing on. Furthermore, such approaches apply rule-based methods to produce try-on masks, which lack flexibility and can lead to distortion or incomplete clothing replacement, especially with unnatural poses or mixed clothes. To address these limitations, we introduce Auto-ARM, an innovative framework that employs an attention-based U-Net architecture with Attention Gate (AG) to dynamically refine the try-on masks based on the target outfit. This novel approach not only significantly enhances the generalization of mask-dependent VTON models but also delivers superior qualitative and quantitative results. Auto-ARM achieves state-of-the-art performance on benchmarks such as VITON-HD and DressCode, proving its potential for high-quality, real-world VTON applications.vi_VN
dc.language.isoenvi_VN
dc.publisherSpringer Naturevi_VN
dc.subjectVirtual try-onvi_VN
dc.subjectMask refinementvi_VN
dc.subjectAttention U-Netvi_VN
dc.titleAuto-ARM: An Autonomous Adaptive Mask Refinement Mechanism for Enhancing Naturalness in Virtual Try-On Modelsvi_VN
dc.typeWorking Papervi_VN
Bộ sưu tập: CITA 2025 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.