Page 206 - Kỷ yếu hội thảo khoa học lần thứ 12 - Công nghệ thông tin và Ứng dụng trong các lĩnh vực (CITA 2023)
P. 206

190


                     Acknowledgements



                     This research is funded by University of Transport and Communications (UTC) under
                     grant number T2023-CN-004.



                     References


                      1.  K. Muhammad, J. Ahmad, I. Mehmood, et  al.  Convolutional  neural  networks  based  fire
                         detection in surveillance videos, IEEE Access, 6 (2018), pp. 18174-18183.
                      2.  C. Tao, J. Zhang, P. Wang Smoke detection based on deep convolutional neural networks,
                         2016  International  Conference  on  Industrial  Informatics  -  Computing  Technology,
                         Intelligent Technology, Industrial Information Integration (ICIICII) (2016), pp. 150-153.
                      3.  A. Filonenko, L. Kurnianggoro, K. Jo Comparative study of modern convolutional neural
                         networks  for  smoke  detection  on  image  data  2017  10th  International  Conference  on
                         Human System Interactions (HSI) (2017), pp. 64-68.
                      4.  Z. Yin, B. Wan, F. Yuan, et al. A deep normalization and convolutional neural network for
                         image smoke detection IEEE ACCESS, 5 (2017), pp. 18429-18438.
                      5.  A.J. Dunnings, T.P. Breckon,  Experimentally  defined  convolutional  neural  network
                         architecture  variants  for  non-temporal  real-time  fire  detection,  2018  25th  IEEE
                         International Conference on Image Processing (ICIP) (2018), pp. 1558-1562.
                      6.  A. Namozov, Y. Cho, An  efficient deep  learning  algorithm for  fire  and smoke detection
                         with limited data, Adv. Electr. Comput. Eng., 18 (2018), pp. 121-128.
                      7.  W. Mao, W. Wang, Z. Dou, Y. Li, Fire recognition based on multi-channel convolutional
                         neural network, Fire Technol., 54 (2018), pp. 531-554.
                      8.  K. Muhammad, J. Ahmad, S.W. Baik,  Early  fire  detection  using  convolutional  neural
                         networks during surveillance for effective disaster management, Neurocomputing, 288 (2018),
                         pp. 30-42.
                      9.  Y. Hu, X. Lu, Real-time video fire smoke detection by utilizing spatial-temporal ConvNet
                         features Multimed. Tool. Appl., 77 (2018), pp. 29283-29301.
                      10. L. Wonjae, K. Seonghyun, L. Yong-Tae, L. Hyun-Woo, C. Min, Deep neural networks for
                         wild fire detection with unmanned aerial vehicle, 2017 IEEE International Conference on
                         Consumer Electronics (ICCE) (2017), pp. 252-253.
                      11. Y. Luo, L. Zhao, P. Liu, D. Huang,  Fire  smoke  detection  algorithm  based  on  motion
                         feature and convolutional neural networks, Multimed. Tool. Appl., 77 (2018), pp. 15075-
                         15092.
                      12. N.M. Dung, D. Kim, S. Ro,  A  video  smoke  detection  algorithm  based  on  cascade
                         classification and deep learning, KSII Internet Inf., 12 (2018), pp. 6018-6033.
                      13. Z. Zhong, M. Wang, Y. Shi, W. Gao,  A  convolutional  neural  network-based  flame
                         detection method in video sequence, Signal Image Video Process., 12 (2018), pp. 1619-1627.
                      14. Hossain, F.M.A.; Zhang, Y.M.; Tonima, M.A. Forest fire flame and smoke detection from
                         UAV-captured images using fire-specific color features and multi-color space local binary
                         pattern. J. Unmanned Veh. Syst. 2020, 8, 285 309.
                      15. Jeong, M.; Park, M.; Nam, J.; Ko, B.C. Light-Weight Student LSTM for Real-Time Forest
                         fire Smoke Detection. Sensors 2020, 20, 5508.



                     CITA 2023                                                   ISBN: 978-604-80-8083-9
   201   202   203   204   205   206   207   208   209   210   211