Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/2298
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorNguyen, The Cuong-
dc.contributor.authorTruong, Ngoc Hai-
dc.contributor.authorNguyen, Thanh Vi-
dc.contributor.authorDang, Thanh Son-
dc.contributor.authorNguyen, Thi Hien-
dc.contributor.authorPham, Ngoc Dung-
dc.date.accessioned2022-08-15T09:46:34Z-
dc.date.available2022-08-15T09:46:34Z-
dc.date.issued2022-07-
dc.identifier.issn978-604-84-6711-1-
dc.identifier.urihttp://elib.vku.udn.vn/handle/123456789/2298-
dc.descriptionThe 11th Conference on Information Technology and its Applications; Topic: Data Science and AI; pp.12-22.vi_VN
dc.description.abstractIn binary classification problems, two classes of data seem to be more complicated due to the number of data points of clusters in each class being different. Traditional algorithms such as Support Vector Machine (SVM), and Twin Support Vector Machine (TSVM) cannot sufficiently exploit structural information with cluster granularity. Structural Twin Support Vector Machine (STSVM) has exploited structural information with cluster granularity of data but does not use information about the number of data points in each cluster. This may affect the accuracy of classification problems. This paper proposes a new Improvement Structural - Support Vector Machine (called IS-SVM) for binary classification problems with a cluster-vs-class strategy. Experimental results show that the IS-SVM's training time is slower than that of TSVM and S-TSVM, but the IS-SVM's accuracy is better than that of TSVM and S-TSVM.vi_VN
dc.language.isoenvi_VN
dc.publisherDa Nang Publishing Housevi_VN
dc.subjectSupport Vector Machinevi_VN
dc.subjectTwin Support Vector Machinevi_VN
dc.subjectStructural Twin Support Vector Machine.vi_VN
dc.titleAn Improvement of Structural – Twin Support Vector Machinevi_VN
dc.typeWorking Papervi_VN
Bộ sưu tập: CITA 2022

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.