
Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/2298
Nhan đề: | An Improvement of Structural – Twin Support Vector Machine |
Tác giả: | Nguyen, The Cuong Truong, Ngoc Hai Nguyen, Thanh Vi Dang, Thanh Son Nguyen, Thi Hien Pham, Ngoc Dung |
Từ khoá: | Support Vector Machine Twin Support Vector Machine Structural Twin Support Vector Machine. |
Năm xuất bản: | thá-2022 |
Nhà xuất bản: | Da Nang Publishing House |
Tóm tắt: | In binary classification problems, two classes of data seem to be more complicated due to the number of data points of clusters in each class being different. Traditional algorithms such as Support Vector Machine (SVM), and Twin Support Vector Machine (TSVM) cannot sufficiently exploit structural information with cluster granularity. Structural Twin Support Vector Machine (STSVM) has exploited structural information with cluster granularity of data but does not use information about the number of data points in each cluster. This may affect the accuracy of classification problems. This paper proposes a new Improvement Structural - Support Vector Machine (called IS-SVM) for binary classification problems with a cluster-vs-class strategy. Experimental results show that the IS-SVM's training time is slower than that of TSVM and S-TSVM, but the IS-SVM's accuracy is better than that of TSVM and S-TSVM. |
Mô tả: | The 11th Conference on Information Technology and its Applications; Topic: Data Science and AI; pp.12-22. |
Định danh: | http://elib.vku.udn.vn/handle/123456789/2298 |
ISSN: | 978-604-84-6711-1 |
Bộ sưu tập: | CITA 2022 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.