Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/2727
Nhan đề: Comprehensive Study on Semantic Segmentation of Ovarian Tumors from Ultrasound Images
Tác giả: Pham, Thi Loan
Le, Van Hung
Tran, Thanh Hai
Vu, Duy Hai
Từ khoá: Ovarian Tumor Ultrasound Image
Semantic Segmentation
PSPNet
DANet
UNet
DeepLabv3
PSANet and Convolutional Neural Networks
Năm xuất bản: thá-2023
Nhà xuất bản: Springer Nature
Tóm tắt: Ovarian cancer is one of the most mortal diseases in women. It is commonly detected by medical experts while observing ultrasound images. With the increasing advance in artificial intelligence, deep learning in particular, many medical image analysis have been applied to improve the efficiency in diagnosis and support for training young doctors. This paper introduces a comprehensive study on the segmentation of ovarian tumors from ultrasound images. We investigate state-of-the-art segmentation models such as PSPNet, U-net, DANet, Deeplabv3, and PSANet and evaluate them on a recently published dataset MMOTU. Different from the original works on the MMOTU dataset that just provided binary segmentation, we generate also the label of 8 tumor categories for each pixel. By doing so, it provides not only the size and shape of tumors but also the diseases. Experimental results show that DANet gives the highest accuracy of 71.65% in average. Overall, Chocolate cyst can be accurately segmented with IoU of 96.33% by PSANet.
Mô tả: Lecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 262-273.
Định danh: https://link.springer.com/chapter/10.1007/978-3-031-36886-8_22
http://elib.vku.udn.vn/handle/123456789/2727
ISBN: 978-3-031-36886-8
Bộ sưu tập: CITA 2023 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.