
Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/2727
Nhan đề: | Comprehensive Study on Semantic Segmentation of Ovarian Tumors from Ultrasound Images |
Tác giả: | Pham, Thi Loan Le, Van Hung Tran, Thanh Hai Vu, Duy Hai |
Từ khoá: | Ovarian Tumor Ultrasound Image Semantic Segmentation PSPNet DANet UNet DeepLabv3 PSANet and Convolutional Neural Networks |
Năm xuất bản: | thá-2023 |
Nhà xuất bản: | Springer Nature |
Tóm tắt: | Ovarian cancer is one of the most mortal diseases in women. It is commonly detected by medical experts while observing ultrasound images. With the increasing advance in artificial intelligence, deep learning in particular, many medical image analysis have been applied to improve the efficiency in diagnosis and support for training young doctors. This paper introduces a comprehensive study on the segmentation of ovarian tumors from ultrasound images. We investigate state-of-the-art segmentation models such as PSPNet, U-net, DANet, Deeplabv3, and PSANet and evaluate them on a recently published dataset MMOTU. Different from the original works on the MMOTU dataset that just provided binary segmentation, we generate also the label of 8 tumor categories for each pixel. By doing so, it provides not only the size and shape of tumors but also the diseases. Experimental results show that DANet gives the highest accuracy of 71.65% in average. Overall, Chocolate cyst can be accurately segmented with IoU of 96.33% by PSANet. |
Mô tả: | Lecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 262-273. |
Định danh: | https://link.springer.com/chapter/10.1007/978-3-031-36886-8_22 http://elib.vku.udn.vn/handle/123456789/2727 |
ISBN: | 978-3-031-36886-8 |
Bộ sưu tập: | CITA 2023 (International) |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.