Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/2731
Nhan đề: Tritention U-Net: A Modified U-Net Architecture for Lung Tumor Segmentation
Tác giả: Le, Nguyen Hung
Nguyen, Duc Dung
Huynh, Tuong Nguyen
Vo, Thanh Hung
Từ khoá: Medical Image Processing
Lung tumor segmentation
Deep Learning
Tritention U-Net
Năm xuất bản: thá-2023
Nhà xuất bản: Springer Nature
Tóm tắt: Lung tumor segmentation in computed tomography (CT) images is a critical task in medical image analysis. It aids in the early detection and diagnosis of lung cancer, which is one of the primary causes of cancer deaths around the world. However, because of the variable sizes, uncertain shapes of lung nodules, and complex internal lung structure, lung tumor segmentation is a difficult problem. In this study, we propose a novel Tritention U-Net as an efficient model for solving that problem. It is integrated with the Tritention Gate on the contracting path between the encoder and decoder to highlight task-relevant salient features. The proposed Tritention U-Net model is trained and evaluated using the Medical Image Decathlon dataset - Task06_Lung, which requires the model to segment a small portion of a lung image. Our model achieved a Dice score of 91.80% and was compared to well-known models to demonstrate the improvement.
Mô tả: Lecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 217-227.
Định danh: https://link.springer.com/chapter/10.1007/978-3-031-36886-8_18
http://elib.vku.udn.vn/handle/123456789/2731
ISBN: 978-3-031-36886-8
Bộ sưu tập: CITA 2023 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.