Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/2741
Nhan đề: Deep Learning-Based Approach for Automatic Detection of Malaria in Peripheral Blood Smear Images
Tác giả: Pham, Vu Thu Nguyet
Nguyen, Quang Chung
Nguyen, Quang Vu
Huynh, Huu Hung
Từ khoá: Deep Learning
Bioinformatics
Parasite Detection
Năm xuất bản: thá-2023
Nhà xuất bản: Springer Nature
Tóm tắt: Malaria is a deadly disease that affects millions of people around the world every year. An accurate and timely diagnosis of malaria is essential for effective treatment and control of the disease. In this study, we propose a deep learning-based approach for automatic detection of malaria in peripheral blood smear images. Our approach consists of two stages: object detection & binary classification using Faster R-CNN, and multi-class classification using EfficientNetv2-L with SVM as the head. We evaluate the performance of our approach using the mean average precision at IoU = 0.5 (mAP@0.5) metric. Our approach achieves an overall performance of 88.7%, demonstrating the potential of deep learning-based approaches for accurate and efficient detection of malaria in peripheral blood smear images. Our study has several implications for the field of malaria diagnosis and treatment. The use of deep learning-based approaches for malaria detection could significantly improve the accuracy and speed of diagnosis, leading to earlier and more effective treatment of the disease.
Mô tả: Lecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 114-125.
Định danh: https://link.springer.com/chapter/10.1007/978-3-031-36886-8_10
http://elib.vku.udn.vn/handle/123456789/2741
ISBN: 978-3-031-36886-8
Bộ sưu tập: CITA 2023 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.