Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/2748
Nhan đề: Towards a New Multi-tasking Learning Approach for Human Fall Detection
Tác giả: Nguyen, Duc Anh
Pham, Cuong
Rob, Argent
Brian, Caulfield
Le, Khac Nhien An
Từ khoá: fall detection
multi-task learning
human activity recognition
data scarcity
Deep Learning
Năm xuất bản: thá-2023
Nhà xuất bản: Springer Nature
Tóm tắt: Many fall detection systems are being used to provide real-time responses to fall occurrences. Automated fall detection is challenging because it requires near perfect accuracy to be clinically acceptable. Recent research has tried to improve the accuracy along with reducing the high rate of false positives. Nevertheless, there are still limitations in terms of having efficient learning approaches and proper datasets to train. To improve the accuracy, one approach is to include non-fall data from public datasets as negative examples to train the deep learning model. However, this approach could increase the imbalance of the training set. In this paper, we propose a multi-task deep learning model to tackle this problem. We divide datasets into multiple training sets for multiple tasks, and we prove this approach gives better results than a single-task model trained on all datasets. Many experiments are conducted to find the best combination of tasks for multi-task model training for fall detection.
Mô tả: Lecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 50-61.
Định danh: https://link.springer.com/chapter/10.1007/978-3-031-36886-8_5
http://elib.vku.udn.vn/handle/123456789/2748
ISBN: 978-3-031-36886-8
Bộ sưu tập: CITA 2023 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.