Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/2751
Nhan đề: | Differentially-Private Distributed Machine Learning with Partial Worker Attendance: A Flexible and Efficient Approach |
Tác giả: | Le, Trieu Phong Tran, Thi Phuong |
Từ khoá: | Differential privacy Partial attendance Communication efficiency Distributed machine learning |
Năm xuất bản: | thá-2023 |
Nhà xuất bản: | Springer Nature |
Tóm tắt: | In distributed machine learning, multiple machines or workers collaborate to train a model. However, prior research in cross-silo distributed learning with differential privacy has the drawback of requiring all workers to participate in each training iteration, hindering flexibility and efficiency. To overcome these limitations, we introduce a new algorithm that allows partial worker attendance in the training process, reducing communication costs by over 50% while preserving accuracy on benchmark data. The privacy of the workers is also improved because less data are exchanged between workers. |
Mô tả: | Lecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 15-24. |
Định danh: | https://link.springer.com/chapter/10.1007/978-3-031-36886-8_2 http://elib.vku.udn.vn/handle/123456789/2751 |
ISBN: | 978-3-031-36886-8 |
Bộ sưu tập: | CITA 2023 (International) |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.