Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/2752
Nhan đề: A New ConvMixer-Based Approach for Diagnosis of Fault Bearing Using Signal Spectrum
Tác giả: Vu, Manh Hung
Nguyen, Van Quang
Tran, Thi Thao
Pham, Van Truong
Từ khoá: Bearing faults diagnosis
Siamese-based Conv-mixer
CWRU data base
Limited data
Năm xuất bản: thá-2023
Nhà xuất bản: Springer Nature
Tóm tắt: It has been reported that nearly 40% of electrical machine failures are caused by bearing problems. That is why identifying bearing failure is crucial. Deep learning for diagnosing bearing faults has been widely used, like WDCNN, Conv-mixer, and Siamese models. However, good diagnosis takes a significant quantity of training data. In order to overcome this, we propose a new approach that can dramatically improve training performance with a small data set. In particular, we propose to integrate the ConvMixer models to the backbone of Siamese network, and use the few-short learning for more accurate classification even with limited training data. Various experimental results with raw signal inputs and signal spectrum inputs are conducted, and compared with those from traditional models using the same data set provided by Case Western Reserve University (CWRU).
Mô tả: Lecture Notes in Networks and Systems (LNNS, volume 734); CITA: Conference on Information Technology and its Applications; pp: 3-14.
Định danh: https://link.springer.com/chapter/10.1007/978-3-031-36886-8_1
http://elib.vku.udn.vn/handle/123456789/2752
ISBN: 978-3-031-36886-8
Bộ sưu tập: CITA 2023 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.