
Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/4271
Nhan đề: | Enhanced Attention-Based Multimodal Deep Learning for Product Categorization on E-Commerce Platform |
Tác giả: | Le, Viet Hung Phan, Binh Phan, Minh Nhat Nguyen, Minh Hieu |
Từ khoá: | Multimodal Deep Learning E-Commerce Platform |
Năm xuất bản: | thá-2024 |
Nhà xuất bản: | Springer Nature |
Tóm tắt: | Labeling and classifying a large number of products is one of the key challenges that e-commerce managers face. Building an automatic model that can accurately classify products helps to optimize the consumer search experience and ensure that they can easily find the products that meet their needs. In this study, we propose an improved Multimodal Deep Learning Model, based on the attention mechanism. This model has the ability to significantly improve accuracy over both traditional Unimodal Deep Learning and Multimodal Deep Learning models. The accuracy of our proposed model reaches 91.18% in classifying 16 different product categories. Meanwhile, traditional Multimodal Deep Learning models only achieved a modest accuracy of 77.21%. This result not only improves the searchability and online shopping experience of consumers, but also makes a significant contribution to solving the challenge of product classification on e-commerce platforms. |
Mô tả: | Lecture Notes in Networks and Systems (LNNS,volume 882); The 13th Conference on Information Technology and Its Applications (CITA 2024) ; pp: 87-98. |
Định danh: | https://elib.vku.udn.vn/handle/123456789/4271 https://doi.org/10.1007/978-3-031-74127-2_8 |
ISBN: | 978-3-031-74126-5 |
Bộ sưu tập: | CITA 2024 (International) |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.