
Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/4277
Nhan đề: | Optimising Deep Learning for Wearable Sensor-Based Fall Detection |
Tác giả: | Zhou, Hong Nguyen, Duc Anh Le, Khac Nhien An |
Từ khoá: | Human Activity Recognition (HAR) Multi-Channel Convolutional Network CMDFall and UP-Fall datasets |
Năm xuất bản: | thá-2024 |
Nhà xuất bản: | Springer Nature |
Tóm tắt: | Fall detection is essential for enabling prompt aid following such accidents. Despite the innovation in deep learning for Human Activity Recognition (HAR), previous studies have not identified a fundamental methodological setup of deep learning methods for fall detection properly. Therefore, this research delves into the deep learning methods for fall detection through an empirical study, employing fundamental deep learning techniques of HAR such as Temporal Convolutional Network, Multi-Channel Convolutional Network, etc. and two public datasets, CMDFall and UP-Fall datasets. We explore the influence of flattening and augmentation methods on various single-branch and multi-branch deep learning models within the HAR field and also explore feature combinations of accelerometer data. In order to identify the best setup for fall detection, comprehensive experiments were carried out spanning different parameters, probing the effectiveness of diverse flattening methods, data augmentation, feature engineering, and model architectures. The findings show how to improve the model’s performance with an optimal setting. |
Mô tả: | Lecture Notes in Networks and Systems (LNNS,volume 882); The 13th Conference on Information Technology and Its Applications (CITA 2024) ; pp: 160-171. |
Định danh: | https://elib.vku.udn.vn/handle/123456789/4277 https://doi.org/10.1007/978-3-031-74127-2_14 |
ISBN: | 978-3-031-74126-5 |
Bộ sưu tập: | CITA 2024 (International) |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.