Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/4279
Nhan đề: cMDTPS: Comprehensive Masked Modality Modeling with Improved Similarity Distribution Matching Loss for Text-based Person Search
Tác giả: Nguyen, Anh D
Pham, Dang H
Nguyen, Duc M
Nguyen, Hoa N
Từ khoá: Comprehensive Masked Modality Modeling
Text-based Person Search
Năm xuất bản: thá-2024
Nhà xuất bản: Springer Nature
Tóm tắt: The goal of text-based person search is to use a textual description query to find the required individual within an image gallery. There are two major obstacles to this task: (i) how to bridge the gap between the textual and visual modalities in the feature space and (ii) how to improve the image representation by removing the focus of the model on unnecessary regions from the image as the same way we do on text input. To address these challenges, we propose cMDTPS, a comprehensive masked modality modeling method with improved similarity distribution matching loss. The proposed method consists of two components: (i) an improved cross-modality alignment loss that minimizes the distance between the distributions of the same person in different modalities, and (ii) a comprehensive masked modality modeling method that helps the model focus on important parts of inputs. We evaluate our proposed method on three popular benchmarks: CUHK-PEDES, ICFG-PEDES, and RSTPReid, and show that it outperforms the state-of-the-art methods.
Mô tả: Lecture Notes in Networks and Systems (LNNS,volume 882); The 13th Conference on Information Technology and Its Applications (CITA 2024) ; pp: 184-196.
Định danh: https://elib.vku.udn.vn/handle/123456789/4279
https://doi.org/10.1007/978-3-031-74127-2_16
ISBN: 978-3-031-74126-5
Bộ sưu tập: CITA 2024 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.