Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/4280
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorHo, Thi Hoang Vy-
dc.contributor.authorTiet, Gia Hong-
dc.contributor.authorDo, Thi Thanh Ha-
dc.contributor.authorVu, Thi My Hang-
dc.contributor.authorHo, Le Thi Kim Nhung-
dc.contributor.authorNguyen, Pham Cuong-
dc.contributor.authorLe, Nguyen Hoai Nam-
dc.date.accessioned2024-12-04T09:18:33Z-
dc.date.available2024-12-04T09:18:33Z-
dc.date.issued2024-11-
dc.identifier.urihttps://elib.vku.udn.vn/handle/123456789/4280-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-74127-2_17-
dc.descriptionLecture Notes in Networks and Systems (LNNS,volume 882); The 13th Conference on Information Technology and Its Applications (CITA 2024) ; pp: 197-208.vi_VN
dc.description.abstractMemory-based collaborative filtering recommendation systems introduce an item to a target user if that item has been liked by users similar to the target user. Therefore, during the training phase, the system needs to compute the similarity of each pair of users. However, the cost for this task becomes infeasible as the number of users increases. To enhance the system’s scalability, it is necessary to cluster users and only compute the similarity between users within each cluster. For this user clustering process, we aim to propose two methods for initializing user clustering instead of random initialization as in previous studies in the field of recommendation systems. Each method is used in two different contexts: with only ratings and with both ratings and item genres. Furthermore, we also present a parallel processing design on Hadoop for computing the Jaccard similarity measure to further reduce the training time of the system.vi_VN
dc.language.isoenvi_VN
dc.publisherSpringer Naturevi_VN
dc.subjectImplementing Efficient Memory-Based Collaborative Filtering Recommendation Systemsvi_VN
dc.titleImplementing Efficient Memory-Based Collaborative Filtering Recommendation Systems: Methods for Improving Scalability in Training Phasevi_VN
dc.typeWorking Papervi_VN
Bộ sưu tập: CITA 2024 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.