Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/4280
Nhan đề: Implementing Efficient Memory-Based Collaborative Filtering Recommendation Systems: Methods for Improving Scalability in Training Phase
Tác giả: Ho, Thi Hoang Vy
Tiet, Gia Hong
Do, Thi Thanh Ha
Vu, Thi My Hang
Ho, Le Thi Kim Nhung
Nguyen, Pham Cuong
Le, Nguyen Hoai Nam
Từ khoá: Implementing Efficient Memory-Based Collaborative Filtering Recommendation Systems
Năm xuất bản: thá-2024
Nhà xuất bản: Springer Nature
Tóm tắt: Memory-based collaborative filtering recommendation systems introduce an item to a target user if that item has been liked by users similar to the target user. Therefore, during the training phase, the system needs to compute the similarity of each pair of users. However, the cost for this task becomes infeasible as the number of users increases. To enhance the system’s scalability, it is necessary to cluster users and only compute the similarity between users within each cluster. For this user clustering process, we aim to propose two methods for initializing user clustering instead of random initialization as in previous studies in the field of recommendation systems. Each method is used in two different contexts: with only ratings and with both ratings and item genres. Furthermore, we also present a parallel processing design on Hadoop for computing the Jaccard similarity measure to further reduce the training time of the system.
Mô tả: Lecture Notes in Networks and Systems (LNNS,volume 882); The 13th Conference on Information Technology and Its Applications (CITA 2024) ; pp: 197-208.
Định danh: https://elib.vku.udn.vn/handle/123456789/4280
https://doi.org/10.1007/978-3-031-74127-2_17
Bộ sưu tập: CITA 2024 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.