Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/4281
Nhan đề: | A Case Study Evaluating Improved Performance in Image Classification Through Combination of CBAM and ShuffleNetV2 Model |
Tác giả: | Le, QuangThien Tran, Trung Tin Nguyen, Thi Thanh Minh Ngueyn, Chanh Hoai Nam Vo, Khang Nguyen, Quang Anh Vu |
Từ khoá: | Case Study Evaluating Improved Performance in Image CBAM and ShuffleNetV2 Model |
Năm xuất bản: | thá-2024 |
Nhà xuất bản: | Springer Nature |
Tóm tắt: | The Attention mechanism is a method that focuses attention on important parts or regions in an image while disregarding unimportant areas. Some methods of Attention mechanism include Channel Attention, Spatial Attention, or a combination of Channel and Spatial Attention. CBAM (Convolutional Block Attention Module) is a method that combines both Channel and Spatial Attention. This paper describes a case study on combining CBAM with the ShuffleNetV2 model to evaluate the effectiveness of improving image classification performance. The ShuffleNetV2 model is trained on the CIFAR-10 dataset combined with CBAM for performance evaluation. The training of the ShuffleNetV2 model has been conducted for approximately 40 epochs. The performance evaluation indicates that the ShuffleNetV2 model combined with CBAM yields Precision 89.5%, Recall 89.4%, F1-score 89.4%, Top-5 error 0.003, and Top-1 error 0.106. In comparison, the ShuffleNetV2 model without CBAM achieves Precision, Recall, F1-score, Top-5 error, and Top-1 error of 88.9%, 88.8%, 0.005, 0.112, respectively. |
Mô tả: | Lecture Notes in Networks and Systems (LNNS,volume 882); The 13th Conference on Information Technology and Its Applications (CITA 2024) ; pp: 209-218. |
Định danh: | https://elib.vku.udn.vn/handle/123456789/4281 https://doi.org/10.1007/978-3-031-74127-2_18 |
ISBN: | 978-3-031-74126-5 |
Bộ sưu tập: | CITA 2024 (International) |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.