Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/4284
Nhan đề: Exploring Scalability in Large-Scale Time Series in DeepVATS Framework
Tác giả: Valenzuela, Inmaculada Santamaria
Fernandez, Victor Rodriguez
Camacho, David
Từ khoá: R Shiny application
DeepVATS is a tool that merges Deep Learning (Deep)
Năm xuất bản: thá-2024
Nhà xuất bản: Springer Nature
Tóm tắt: Visual analytics is essential for studying large time series due to its ability to reveal trends, anomalies, and insights. DeepVATS is a tool that merges Deep Learning (Deep) with Visual Analytics (VA) for the analysis of large time series data (TS). It has three interconnected modules. The Deep Learning module, developed in R, manages the load of datasets and Deep Learning models from and to the Storage module. This module also supports models training and the acquisition of the embeddings from the latent space of the trained model. The Storage module operates using the Weights and Biases system. Subsequently, these embeddings can be analyzed in the Visual Analytics module. This module, based on an R Shiny application, allows the adjustment of the parameters related to the projection and clustering of the embeddings space. Once these parameters are set, interactive plots representing both the embeddings, and the time series are shown. This paper introduces the tool and examines its scalability through log analytics. The execution time evolution is examined while the length of the time series is varied. This is achieved by resampling a large data series into smaller subsets and logging the main execution and rendering times for later analysis of scalability.
Mô tả: Lecture Notes in Networks and Systems (LNNS,volume 882); The 13th Conference on Information Technology and Its Applications (CITA 2024) ; pp: 244-255.
Định danh: https://elib.vku.udn.vn/handle/123456789/4284
https://doi.org/10.1007/978-3-031-74127-2_21
ISBN: 978-3-031-74126-5
Bộ sưu tập: CITA 2024 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.