Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/4285
Nhan đề: GEO: An Approach for Out-of-Distribution Detection in Graph Neural Networks Using Energy Scoring and One-Class Learning
Tác giả: Nguyen, Mao
Le, Triet
Pham, Thien
Quan, Tho
Từ khoá: Graph neural networks (GNN)
GEO: An Approach for Out-of-Distribution Detection in Graph Neural Networks
Năm xuất bản: thá-2024
Nhà xuất bản: Springer Nature
Tóm tắt: Graph neural networks (GNN) have emerged as a powerful approach for learning from data that is structured as a graph. However, a remaining challenge is developing reliable and robust GNN models that can accurately detect inputs that are outside the distribution of training data. In this study, we propose a novel method for detecting Out-of-distribution (OOD) inputs that combines GNN with energy-based learning and one-class classification objectives. We name this approach as GEO (Graph Energy-based Out-of-distribution detection). GEO assigns anomaly scores using an energy function derived from GNN logits, correlating with sample density for reliable uncertainty estimates. Our approach, which combines classification, energy scoring, and one-class objectives, excels in OOD detection, outperforming existing methods on sparse graph datasets. GEO achieves top AUROC scores, including 95.51% on Cora and 99.99% on Amazon, enhancing GNN reliability and offering a theoretically sound solution for detecting distributional shifts.
Mô tả: Lecture Notes in Networks and Systems (LNNS,volume 882); The 13th Conference on Information Technology and Its Applications (CITA 2024) ; pp: 259-270.
Định danh: https//elib.vku.udn.vn/handle/123456789/4285
https://doi.org/10.1007/978-3-031-74127-2_22
ISBN: 978-3-031-74126-5
Bộ sưu tập: CITA 2024 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.