Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/4291
Nhan đề: How Does Data Augmentation Affect to Model Performance in Long-Tailed Classification?
Tác giả: Vu, Quang Duc
Trinh, Van Ha
Dang, An
Phung, Thi Thu Trang
Ha, Minh Tan
Từ khoá: Data Augmentation Affect to Model Performance in Long-Tailed Classification?
Data augmentation intuitively increases the imbalance ratio between majority classes and minority classes
Models on recognition systems and embedded devices
Năm xuất bản: thá-2024
Nhà xuất bản: Springer Nature
Tóm tắt: Long-tailed classification is one of the biggest issues in the real-world, because severe data imbalances often lead to less accurate forecasts in the minority. This seriously affects deploying prediction models on recognition systems and embedded devices. Most recently methods have focused on improving the model’s performance by proposing new rebalance strategies, using more networks, transfer learning, etc. In this paper, we investigate the impact of data augmentation for long-tailed classification via two proposed cases including data augmentation for all classes and data augmentation only for minority classes. Data augmentation intuitively increases the imbalance ratio between majority classes and minority classes. This may directly affect the model’s performance. However, the experiment results in case 1 have shown the opposite, we found that with more data at tailed classes, the model can learn better and achieve higher despite the imbalance ratio increase. In addition, it serves as an updated version of case 1 to overcome its limitations. The results have depicted that our approach achieves state-of-the-art performance on long-tailed classification.
Mô tả: Lecture Notes in Networks and Systems (LNNS,volume 882); The 13th Conference on Information Technology and Its Applications (CITA 2024) ; pp: 337-347.
Định danh: https://elib.vku.udn.vn/handle/123456789/4291
https://doi.org/10.1007/978-3-031-74127-2_28
ISBN: 978-3-031-74126-5
Bộ sưu tập: CITA 2024 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.