Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/4292
Nhan đề: Improved Tomato Detector Supporting for Automatic Harvesting Systems
Tác giả: Nguyen, Duy LInh
Vo, Xuan Thuy
Priadana, Adri
Choi, Jehwan
Hyun Jo, Kang
Từ khoá: Improved Tomato Detector Supporting for Automatic Harvesting Systems
Agriculture is one of the most important fields that attracts a lot of attention from researchers to develop serving tools
Năm xuất bản: thá-2024
Nhà xuất bản: Springer Nature
Tóm tắt: Currently, Artificial Intelligence has penetrated every corner of social life. Agriculture is one of the most important fields that attracts a lot of attention from researchers to develop serving tools. This paper focuses on developing a vision-based tomato detector to support robotics and automatic harvesting systems. The main technique is to improve the YOLOv8n network architecture with the entire replacement of the original convolution module with a new convolution module, named the Receptive Field Attention Convolution. The experiment was trained and evaluated on the Laboro Tomato dataset. As a result, the proposed network achieved 88.2% of mAP@0.5 and 45.8% of mAP@0.5:0.95. These results show that the proposed network has better performance than other networks under the same experimental conditions.
Mô tả: Lecture Notes in Networks and Systems (LNNS,volume 882); The 13th Conference on Information Technology and Its Applications (CITA 2024) ; pp: 348-359.
Định danh: https://elib.vku.udn.vn/handle/123456789/4292
https://doi.org/10.1007/978-3-031-74127-2_29
ISBN: 978-3-031-74126-5
Bộ sưu tập: CITA 2024 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.