Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/4294
Nhan đề: Small Object Detection Without Attention for Aerial Surveillance
Tác giả: Choi, Yehwan
Nguyen, Duy Linh
Vo, Xuan Thuy
Hyun Jo, Kang
Từ khoá: To improve the detection of small objects, we propose a network incorporating an element-wise multiplication module based on the vanilla Vision Transformer (ViT) architecture
However, traditional transformer models need significant computational resources, which may not be practical for edge devices like CCTV cameras or drones
Năm xuất bản: thá-2024
Nhà xuất bản: Springer Nature
Tóm tắt: This paper introduces the development of an essential deep-learning model for surveillance systems utilizing high-mounted CCTV or drones. Objects seen from elevated angles often look smaller and may appear at different angles compared to ground-level observations. To improve the detection of small objects, we propose a network incorporating an element-wise multiplication module based on the vanilla Vision Transformer (ViT) architecture. However, traditional transformer models need significant computational resources, which may not be practical for edge devices like CCTV cameras or drones. Therefore, we apply the Attention-Free Transformer (AFT) to reduce computational requirements enabling real-time operation on low-capacity devices. We validate the performance by combining ViT and AFT with the YOLOv5 real-time object detection model. Practical applicability is confirmed by implementing it on the low-capacity device named ODROID H3+. Validation datasets include Autonomous Driving Drone, VisDrone, AerialMaritime, and PKLot, all containing numerous small-sized objects. Experimental results on the VisDrone dataset show that YOLOv5 nano + AFT reduces parameter count by 4.6% while increasing accuracy by 1%, making it an efficient network. The model size is suitable for edge device implementation at 3.7 MB. Similarly, Aerial Maritime and PKLot datasets indicate a decreased amount of parameters and increased accuracy. Hence, the proposed deep learning model is applicable for aerial surveillance systems.
Mô tả: Lecture Notes in Networks and Systems (LNNS,volume 882); The 13th Conference on Information Technology and Its Applications (CITA 2024) ; pp: 372-383.
Định danh: https://elib.vku.udn.vn/handle/123456789/4294
https://doi.org/10.1007/978-3-031-74127-2_31
ISBN: 978-3-031-74126-5
Bộ sưu tập: CITA 2024 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.