Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/4296
Nhan đề: MCST-Net: A Multi-Cross-Spatial Attention U-Net with Transformer Block for Skin Lesion Segmentation
Tác giả: Vu, Manh Hung
Tran, Ngoc Du
Le, Hoang Minh Quang
Tran, Thi Thao
Pham, Van Truong
Từ khoá: MCST-Net: A Multi-Cross-Spatial Attention U-Net with Transformer Block for Skin Lesion Segmentation
The transformer block that is widely used in natural language processing (NLP) is incorporated into the model, which helps to improve performance with processing the highest features
Năm xuất bản: thá-2024
Nhà xuất bản: Springer Nature
Tóm tắt: Applying deep learning to skin lesion image segmentation has grown in popularity over the past few years. It is simpler to understand the injuries and administer the proper care using segmented images. In this research, we proposed a new model, by building a multi-cross-attention block, combining it with the transformer block and Unet model. In particular, our multi-cross-spatial attention block is highly effective when it comes to extracting features from multiple layers, helping to increase efficiency in the image upsample process. The transformer block that is widely used in natural language processing (NLP) is incorporated into the model, which helps to improve performance with processing the highest features. Additionally, our model has the benefit of having a small number of parameters in addition to providing great performance on the two well-known datasets, ISIC 2018 and PH2.
Mô tả: Lecture Notes in Networks and Systems (LNNS,volume 882); The 13th Conference on Information Technology and Its Applications (CITA 2024) ; pp: 397-408.
Định danh: https://elib.vku.udn.vn/handle/123456789/4296
https://doi.org/10.1007/978-3-031-74127-2_33
ISBN: 978-3-031-74126-5
Bộ sưu tập: CITA 2024 (International)

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.