Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://elib.vku.udn.vn/handle/123456789/4306
Nhan đề: | Advancing Phishing Attack Detection with a Novel Dataset and Deep Learning Solution |
Tác giả: | Le, Quoc Khanh Nguyen, Quoc An Nguyen, Dat Thinh Nguyen, Xuan Ha Le, Kim Hung |
Từ khoá: | Advancing Phishing Attack Detection with a Novel Dataset and Deep Learning Solution Learning models and SAINT, a state-of-the-art deep learning model for tabular data. |
Năm xuất bản: | thá-2024 |
Nhà xuất bản: | Springer Nature |
Tóm tắt: | Phishing attacks, increasingly complex and accessible due to low cost and technical requirements, demand advanced detection methods. While recent machine learning-based approaches show promising results in preventing these threats, they still face limitations in terms of outdated training datasets and the number of extracted features. Therefore, in this paper, we introduce a novel phishing attack dataset with a high number of samples and dimensionality. We also propose a transformer-based deep learning model to detect phishing attacks accurately. Our experimental results on our dataset show a significant performance gain, achieving 98.13% accuracy, surpassing popular machine learning models and SAINT, a state-of-the-art deep learning model for tabular data. |
Mô tả: | Lecture Notes in Networks and Systems (LNNS,volume 882); The 13th Conference on Information Technology and Its Applications (CITA 2024) ; pp: 536-547. |
Định danh: | https://elib.vku.udn.vn/handle/123456789/4306 https://doi.org/10.1007/978-3-031-74127-2_43 |
ISBN: | 978-3-031-74126-5 |
Bộ sưu tập: | CITA 2024 (International) |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.