Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/5786
Nhan đề: Performance Analysis of Deep Learning Models for Software Fault Prediction Using the BugHunter Dataset
Nhan đề khác: Đánh giá các mô hình học sâu cho bài toán dự đoán lỗi phần mềm trên bộ dữ liệu BugHunter
Tác giả: Dang, Thi Kim Ngan
Dao, Khanh Duy
Ha, Thi Minh Phuong
Nguyen, Thanh Binh
Từ khoá: Software fault prediction
machine learning
BugHunter dataset
Năm xuất bản: thá-2025
Nhà xuất bản: The Journal of Information and Communication
Tóm tắt: Software fault prediction (SFP) involves the identification of potentially fault-prone modules before the testing phase in the software development lifecycle. By predicting faults early in the development process, the SFP process enables software developers to focus their efforts on components that may contain faults, thereby enhancing the overall quality and reliability of the software. Machine learning and deep learning techniques have been widely applied to train SFP models. However, these approaches face several challenges, including irrelevant or redundant features, imbalanced datasets, overfitting, and complex model structures. The NASA dataset from the PROMISE repository is the most commonly used dataset for fault prediction. Recently, the BugHunter dataset with its substantially larger number of instances was explored to train the SFP models. In this study, we present the comparative study of three deep learning models, including Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM) and four machine learning models as K-Nearest Neighbors (KNN), Multilayer Perceptron (MLP), Adaptive Boosting (AdaBoost), Extreme Gradient Boosting (XGB) to investigate the performance of SFP models on the BugHunter dataset. We employ the Lasso method for feature selection and apply the Synthetic Minority Oversampling Technique (SMOTE) to address the issue of imbalanced data, aiming to enhance the accuracy of the results. The experimental findings reveal that CNN and RNN outperformed other machine learning models, achieving the best overall performance.
Mô tả: Research, Development and Application on Information and Communication Technology; Tập 2025, số 1, tháng 6
Định danh: https://ictmag.ictvietnam.vn/cntt-tt/article/view/1374
https://elib.vku.udn.vn/handle/123456789/5786
ISSN: 1859-3526
Bộ sưu tập: NĂM 2025

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.