Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://elib.vku.udn.vn/handle/123456789/5797
Nhan đề: Enhancing Data Security in Federated Learning with Dilithium
Tác giả: Phan, Quoc Bao
Nguyen, Hien
Duong, Ngoc Phap
Nguyen, Tuy Tan
Từ khoá: Secure transmission
Dilithium
federated learning
digital signature
Năm xuất bản: thá-2025
Nhà xuất bản: IEEE
Tóm tắt: Federated learning (FL) enables multiple parties to collaboratively train machine learning models while preserving data privacy. However, securing communication within FL frameworks remains a significant challenge due to potential vulnerabilities to data breaches and integrity attacks. This paper proposes a novel approach using Dilithium, a robust digital signature framework, to enhance data security in FL. By integrating Dilithium into FL protocols, this study demonstrates robust communication security, preventing data tampering and unauthorized access, thereby promoting safer and more efficient collaborative model training across distributed networks. Furthermore, our approach incorporates an optimized client selection algorithm and a parallelized GPU-based training process that reduces latency and ensures seamless synchronization among participants. Experimental results demonstrate that our system achieves a total processing time of 6.891 seconds, significantly outperforming the 10.24 seconds of normal FL and 12.32 seconds of FL-Dilithium systems on the same computing platforms. Additionally, the proposed model achieves an accuracy of 94%, surpassing the 93% of the normal FL.
Mô tả: 2025 IEEE International Conference on Consumer Electronics (ICCE), 11-14 January 2025
Định danh: https://doi.org/10.1109/ICCE63647.2025.10929843
https://elib.vku.udn.vn/handle/123456789/5797
ISBN: 979-8-3315-2116-5
ISSN: 2158-4001
Bộ sưu tập: NĂM 2025

Các tập tin trong tài liệu này:

 Đăng nhập để xem toàn văn



Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.